SCFNet: Semantic correction and focus network for remote sensing image object detection

计算机科学 稳健性(进化) 人工智能 光学(聚焦) 模式识别(心理学) 目标检测 卷积神经网络 比例(比率) 保险丝(电气) 计算机视觉 数据挖掘 物理 光学 生物化学 化学 电气工程 量子力学 基因 工程类
作者
Chenke Yue,Junhua Yan,Yin Zhang,Zhaolong Luo,Yong Liu,Pengyu Guo
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:224: 119980-119980 被引量:5
标识
DOI:10.1016/j.eswa.2023.119980
摘要

In high-resolution remote sensing images, the problems of large scale variation, large intra-class variance of background, small variability and irregularity of arrangement between different targets always exist in remote sensing images, making the modeling between targets and background more difficult and the target detection task more difficult. However, general target detection methods mainly use convolutional layers of different scales to enhance the target's perceptual domain and fuse different scale features to solve the scale variation problem, without considering the other two problems prevalent in remote sensing scenes of earth observation. In order to solve the above two problems, this paper proposes a semantic correction and focusing network (SCFNet) from the perspective of modeling the relationship between background and target and target to target. The network consists of two core modules the Local Correction Module (LCM) calculates the similarity of local features through the global features of the image to correct the local features and exclude the non-relevant The Non-local Focus Module (NLFM) enhances the recognition of target features by obtaining the non-local dependencies and the corrected local features from the LCM. To demonstrate the effectiveness and robustness of our proposed method, we conducted extensive experiments on two publicly popular large remote sensing multi-target detection datasets, namely DIOR and DOTA. the experimental results show that our SCFNet achieves best-in-class performance and significant accuracy improvement on the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lll发布了新的文献求助10
1秒前
留胡子的问芙完成签到,获得积分10
1秒前
hauru完成签到,获得积分10
1秒前
2秒前
3秒前
erhao完成签到,获得积分10
3秒前
苹果笑寒发布了新的文献求助20
3秒前
3秒前
YamDaamCaa应助要减肥的断秋采纳,获得30
4秒前
Lucas应助电脑桌采纳,获得10
4秒前
4秒前
我不李解发布了新的文献求助10
4秒前
ljw发布了新的文献求助10
4秒前
5秒前
golfgold发布了新的文献求助10
6秒前
6秒前
心灵美的元枫完成签到,获得积分10
6秒前
6秒前
芒草lx完成签到,获得积分20
6秒前
福禄小哥完成签到,获得积分10
7秒前
脑洞疼应助JXHX采纳,获得10
7秒前
宁阿霜发布了新的文献求助10
8秒前
卡卡西应助LXL采纳,获得20
8秒前
Lucas应助开心夜云采纳,获得10
8秒前
开心荔枝完成签到,获得积分10
9秒前
9秒前
神锋天下发布了新的文献求助30
9秒前
霸王丸完成签到,获得积分10
10秒前
Hello应助社恐小青年采纳,获得10
10秒前
10秒前
bocai发布了新的文献求助10
10秒前
一直完成签到,获得积分10
11秒前
11秒前
00发布了新的文献求助10
11秒前
852应助略略略采纳,获得10
11秒前
紧张的世德完成签到 ,获得积分10
12秒前
桐桐应助ccyh采纳,获得10
12秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207