Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高xl完成签到,获得积分10
2秒前
bsknkd完成签到 ,获得积分10
2秒前
李爱国应助nxy采纳,获得10
2秒前
ne完成签到 ,获得积分10
3秒前
luminious完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
zz发布了新的文献求助10
6秒前
7秒前
李健的小迷弟应助杨小鸿采纳,获得10
8秒前
8秒前
8秒前
10秒前
fabius0351完成签到 ,获得积分10
11秒前
zz完成签到,获得积分10
12秒前
香蕉觅云应助eve采纳,获得10
13秒前
Xu完成签到,获得积分10
13秒前
juzi发布了新的文献求助10
14秒前
14秒前
元神发布了新的文献求助10
17秒前
17秒前
17秒前
nn完成签到 ,获得积分10
18秒前
科研小白完成签到 ,获得积分10
19秒前
mz完成签到,获得积分10
20秒前
22秒前
迷人绿柏完成签到 ,获得积分10
22秒前
22秒前
Criminology34应助积极涵阳采纳,获得10
22秒前
left_right发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
26秒前
香蕉觅云应助youxin采纳,获得10
26秒前
冷灰天花板完成签到,获得积分10
28秒前
端庄梦松发布了新的文献求助10
29秒前
SKinner完成签到,获得积分10
31秒前
动听的世立完成签到,获得积分10
31秒前
31秒前
31秒前
大龙哥886应助hkh采纳,获得10
31秒前
科研通AI2S应助hkh采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742102
求助须知:如何正确求助?哪些是违规求助? 5405928
关于积分的说明 15343995
捐赠科研通 4883565
什么是DOI,文献DOI怎么找? 2625098
邀请新用户注册赠送积分活动 1573960
关于科研通互助平台的介绍 1530910