Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
么么叽完成签到,获得积分10
刚刚
刚刚
尧南完成签到,获得积分10
1秒前
悠悠夏日长完成签到 ,获得积分10
1秒前
1秒前
ccc完成签到,获得积分10
2秒前
2秒前
帅气的藏鸟完成签到 ,获得积分10
3秒前
3秒前
皮卡丘完成签到 ,获得积分10
3秒前
zfY发布了新的文献求助10
4秒前
wangshibing发布了新的文献求助10
4秒前
tuanheqi应助66666采纳,获得50
5秒前
5秒前
5秒前
6秒前
毛豆爸爸应助邱冯冯采纳,获得20
6秒前
呆萌小虾米完成签到,获得积分10
6秒前
香蕉觅云应助nihao2023采纳,获得10
7秒前
小高同学发布了新的文献求助10
7秒前
7秒前
8秒前
Linson完成签到,获得积分10
8秒前
siiiiixx发布了新的文献求助20
9秒前
和谐的访文完成签到,获得积分10
9秒前
9秒前
9秒前
CipherSage应助lyhsg采纳,获得10
9秒前
9秒前
11秒前
伏波完成签到,获得积分10
11秒前
11秒前
12秒前
沉默的青筠完成签到,获得积分10
12秒前
隐形曼青应助微微一笑采纳,获得10
12秒前
大模型应助sunmoon采纳,获得10
12秒前
13秒前
Lucas应助llllllll采纳,获得10
13秒前
求文献完成签到,获得积分10
14秒前
www发布了新的文献求助10
14秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183