Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑zz完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
sanch发布了新的文献求助10
1秒前
可爱的函函应助hahhhhhh2采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
Kahn发布了新的文献求助10
3秒前
MU完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
上官若男应助ZoengPak采纳,获得10
4秒前
5秒前
5秒前
小马甲应助缝纫工采纳,获得10
5秒前
郑zz发布了新的文献求助10
6秒前
Orange应助楠楠采纳,获得10
6秒前
Owen应助史萌采纳,获得10
6秒前
含蓄曲奇发布了新的文献求助10
6秒前
6秒前
6秒前
斯文败类应助panada采纳,获得10
7秒前
传奇3应助小小采纳,获得10
7秒前
龙之剑香完成签到,获得积分10
7秒前
传奇3应助石头采纳,获得10
7秒前
7秒前
娟不卷发布了新的文献求助10
7秒前
7秒前
7秒前
卷毛羊在忙完成签到,获得积分10
7秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214