Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
东winter发布了新的文献求助10
1秒前
1秒前
yuqin完成签到,获得积分10
2秒前
ji发布了新的文献求助10
2秒前
2秒前
科研通AI6应助孤独千愁采纳,获得10
3秒前
清脆映真发布了新的文献求助10
3秒前
Irena完成签到,获得积分10
3秒前
3秒前
600完成签到,获得积分10
3秒前
滴滴哒发布了新的文献求助10
3秒前
搜集达人应助Dotson采纳,获得10
4秒前
王卫应助xu采纳,获得10
4秒前
rjhgh完成签到,获得积分10
4秒前
4秒前
BIO完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
Mine_cherry应助wtl采纳,获得10
6秒前
框框发布了新的文献求助10
6秒前
Irena发布了新的文献求助10
6秒前
7秒前
东winter完成签到,获得积分10
7秒前
7秒前
yu关闭了yu文献求助
8秒前
8秒前
lunlun发布了新的文献求助30
9秒前
leinuo077完成签到,获得积分10
9秒前
清脆映真完成签到,获得积分10
9秒前
biu完成签到,获得积分10
10秒前
风乘万里发布了新的文献求助50
10秒前
蓝茶完成签到,获得积分10
10秒前
Dotson完成签到,获得积分10
10秒前
小梁发布了新的文献求助10
11秒前
YC完成签到,获得积分10
11秒前
hyper3than完成签到,获得积分10
11秒前
11秒前
科研通AI6应助李小莉0419采纳,获得10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836