Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
22发布了新的文献求助10
1秒前
热心白枫发布了新的文献求助10
1秒前
soil发布了新的文献求助10
1秒前
wu发布了新的文献求助10
1秒前
1秒前
1秒前
辛勤秋双完成签到,获得积分10
1秒前
华仔应助温大全采纳,获得10
1秒前
Owen应助常馨月采纳,获得10
2秒前
2秒前
2011509382完成签到,获得积分10
3秒前
xpeng发布了新的文献求助10
3秒前
文艺哈密瓜完成签到,获得积分10
3秒前
3秒前
Su发布了新的文献求助10
4秒前
stefanie发布了新的文献求助10
4秒前
zh完成签到,获得积分10
4秒前
4秒前
烦烦烦发布了新的文献求助10
5秒前
5秒前
汉堡包应助祁岳颐采纳,获得10
5秒前
科研通AI6应助xiaoliu采纳,获得10
5秒前
5秒前
lsy发布了新的文献求助10
5秒前
加尔完成签到,获得积分10
5秒前
gt发布了新的文献求助10
6秒前
7秒前
LLL发布了新的文献求助10
7秒前
7秒前
简单书白完成签到,获得积分10
7秒前
见贤思齐发布了新的文献求助30
7秒前
7秒前
7秒前
8秒前
搜集达人应助yyyyyge采纳,获得10
8秒前
姜jiang完成签到,获得积分10
8秒前
8秒前
9秒前
Micheal完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620086
求助须知:如何正确求助?哪些是违规求助? 4704553
关于积分的说明 14928430
捐赠科研通 4760801
什么是DOI,文献DOI怎么找? 2550747
邀请新用户注册赠送积分活动 1513486
关于科研通互助平台的介绍 1474498