Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助周宇飞采纳,获得10
刚刚
斯文败类应助周宇飞采纳,获得10
刚刚
小二郎应助周宇飞采纳,获得10
刚刚
心旷神怡发布了新的文献求助10
刚刚
FashionBoy应助周宇飞采纳,获得10
刚刚
万能图书馆应助周宇飞采纳,获得10
刚刚
搜集达人应助周宇飞采纳,获得10
刚刚
在水一方应助周宇飞采纳,获得10
刚刚
完美世界应助周宇飞采纳,获得10
刚刚
赘婿应助周宇飞采纳,获得10
刚刚
上官若男应助深情冷雪采纳,获得10
1秒前
箴琪完成签到,获得积分10
1秒前
niNe3YUE应助洋了个洋采纳,获得10
1秒前
陆帅帅他义父完成签到,获得积分10
2秒前
大个应助Cris采纳,获得10
2秒前
wu基督教完成签到,获得积分10
2秒前
大白完成签到,获得积分10
2秒前
shadow发布了新的文献求助10
2秒前
2秒前
6666发布了新的文献求助10
2秒前
领导范儿应助拉长的念露采纳,获得10
3秒前
3秒前
xixi完成签到 ,获得积分10
3秒前
运气爆棚发布了新的文献求助10
3秒前
4秒前
小马甲应助范天问采纳,获得10
4秒前
maodou完成签到,获得积分10
4秒前
4秒前
胡佳文发布了新的文献求助100
5秒前
周海涛发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
浮游应助kakainho采纳,获得10
5秒前
5秒前
江城一霸完成签到,获得积分10
6秒前
深情安青应助七qiqi采纳,获得10
6秒前
xiaoming777完成签到,获得积分10
6秒前
酷酷的酷酷完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654