Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
francesliu完成签到,获得积分10
1秒前
yyhgyg完成签到,获得积分10
1秒前
yy发布了新的文献求助10
1秒前
聪慧翠风发布了新的文献求助10
1秒前
桐桐应助小胡采纳,获得10
2秒前
ajia应助专注白昼采纳,获得10
2秒前
LJJ完成签到,获得积分10
2秒前
tutu完成签到,获得积分20
2秒前
聪111应助淡淡的南风采纳,获得100
2秒前
2秒前
Mic应助天真千易采纳,获得10
2秒前
浮游应助天真千易采纳,获得10
2秒前
Li发布了新的文献求助10
2秒前
Mic应助天真千易采纳,获得30
2秒前
yy完成签到,获得积分10
2秒前
asdf应助天真千易采纳,获得10
2秒前
pluto应助天真千易采纳,获得10
2秒前
浮游应助天真千易采纳,获得10
3秒前
pluto应助天真千易采纳,获得10
3秒前
3秒前
浮游应助天真千易采纳,获得10
3秒前
Harry应助天真千易采纳,获得10
3秒前
浮游应助天真千易采纳,获得10
3秒前
好久不见发布了新的文献求助10
3秒前
3秒前
3秒前
慕青应助les3采纳,获得20
4秒前
4秒前
大个应助可耐的不平采纳,获得10
4秒前
恺恺qaq发布了新的文献求助200
4秒前
上官若男应助可耐的不平采纳,获得10
4秒前
JamesPei应助羊羊毛卷儿采纳,获得10
4秒前
共享精神应助可耐的不平采纳,获得10
4秒前
4秒前
CodeCraft应助可耐的不平采纳,获得10
4秒前
上官若男应助可耐的不平采纳,获得10
4秒前
huangrui完成签到 ,获得积分10
5秒前
简单的静枫发布了新的文献求助100
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978