Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晗月完成签到,获得积分10
1秒前
情怀应助如意枫叶采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
Akim应助SS采纳,获得10
5秒前
张雷应助清新的夜蕾采纳,获得20
5秒前
chennn发布了新的文献求助10
5秒前
罗一完成签到,获得积分10
7秒前
9秒前
丘比特应助wu采纳,获得10
12秒前
俏皮芷蕊发布了新的文献求助30
12秒前
称心的菲鹰完成签到,获得积分10
13秒前
碧蓝问安发布了新的文献求助10
14秒前
14秒前
打打应助ZZZ采纳,获得10
16秒前
20秒前
呆萌板凳发布了新的文献求助10
20秒前
hp关闭了hp文献求助
21秒前
22秒前
都选C完成签到,获得积分10
23秒前
壮观以松完成签到,获得积分10
23秒前
Liufgui应助郭小宝采纳,获得20
23秒前
heli完成签到,获得积分10
25秒前
如意枫叶发布了新的文献求助10
26秒前
都选C发布了新的文献求助10
27秒前
英俊的铭应助淡烟流水采纳,获得10
28秒前
28秒前
Miracle完成签到,获得积分10
30秒前
34秒前
wu发布了新的文献求助10
34秒前
忧心的听双完成签到,获得积分10
34秒前
Timon完成签到,获得积分10
35秒前
深情安青应助Miracle采纳,获得10
36秒前
李健应助猪猪hero采纳,获得10
36秒前
kingwill应助Harlotte采纳,获得60
36秒前
张雯思发布了新的文献求助10
37秒前
西瓜刀发布了新的文献求助10
37秒前
寒冷的发箍完成签到,获得积分10
39秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136