A comprehensive benchmarking of differential splicing tools for RNA-seq analysis at the event level

RNA剪接 标杆管理 计算机科学 计算生物学 事件(粒子物理) 选择性拼接 鉴定(生物学) 数据挖掘 生物 核糖核酸 基因 遗传学 信使核糖核酸 物理 量子力学 业务 营销 植物
作者
Minghao Jiang,Shi‐Yan Zhang,Hongxin Yin,Zhiyi Zhuo,Guoyu Meng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:28
标识
DOI:10.1093/bib/bbad121
摘要

Abstract RNA alternative splicing, a post-transcriptional stage in eukaryotes, is crucial in cellular homeostasis and disease processes. Due to the rapid development of the next-generation sequencing (NGS) technology and the flood of NGS data, the detection of differential splicing from RNA-seq data has become mainstream. A range of bioinformatic tools has been developed. However, until now, an independent and comprehensive comparison of available algorithms/tools at the event level is still lacking. Here, 21 different tools are subjected to systematic evaluation, based on simulated RNA-seq data where exact differential splicing events are introduced. We observe immense discrepancies among these tools. SUPPA, DARTS, rMATS and LeafCutter outperforme other event-based tools. We also examine the abilities of the tools to identify novel splicing events, which shows that most event-based tools are unsuitable for discovering novel splice sites. To improve the overall performance, we present two methodological approaches i.e. low-expression transcript filtering and tool-pair combination. Finally, a new protocol of selecting tools to perform differential splicing analysis for different analytical tasks (e.g. precision and recall rate) is proposed. Under this protocol, we analyze the distinct splicing landscape in the DUX4/IGH subgroup of B-cell acute lymphoblastic leukemia and uncover the differential splicing of TCF12. All codes needed to reproduce the results are available at https://github.com/mhjiang97/Benchmarking_DS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Novoa应助Lasse采纳,获得10
1秒前
1秒前
1秒前
2秒前
安静羿关注了科研通微信公众号
3秒前
Sakura完成签到 ,获得积分10
3秒前
Vince完成签到,获得积分10
3秒前
4秒前
4秒前
卡皮巴拉不卡屁完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
5秒前
老迟到的冬瓜完成签到,获得积分10
5秒前
Melody完成签到,获得积分10
5秒前
5秒前
Jasper应助愉快的莹采纳,获得10
5秒前
badada完成签到,获得积分10
5秒前
Bao_o_o完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
笨蛋小章完成签到,获得积分10
8秒前
8秒前
朱子煊发布了新的文献求助10
8秒前
DNA完成签到,获得积分10
8秒前
梅菜菜发布了新的文献求助10
8秒前
yzz发布了新的文献求助10
8秒前
领导范儿应助duoduo7采纳,获得10
8秒前
CipherSage应助sunshine采纳,获得10
9秒前
我要发Nature完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助30
9秒前
娜娜酱油发布了新的文献求助10
10秒前
11秒前
Bao_o_o发布了新的文献求助10
11秒前
迷路的问蕊完成签到,获得积分20
11秒前
团结友爱发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791