GSAL: Geometric structure adversarial learning for robust medical image segmentation

分割 人工智能 计算机科学 边界(拓扑) 模式识别(心理学) 计算机视觉 图像分割 尺度空间分割 判别式 数学 数学分析
作者
Kun Wang,Xiaohong Zhang,Yuting Lu,Wei Zhang,Sheng Huang,Dan Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:140: 109596-109596 被引量:9
标识
DOI:10.1016/j.patcog.2023.109596
摘要

Automatic medical image segmentation plays a crucial role in clinical diagnosis and treatment. However, it is still a challenging task due to the complex interior characteristics (e.g., inconsistent intensity, low contrast, texture heterogeneity) and ambiguous external boundary structures. In this paper, we introduce a novel geometric structure learning mechanism (GSLM) to overcome the limitations of existing segmentation models that lack learning "focus, path, and difficulty." The geometric structure in this mechanism is jointly characterized by the skeleton-like structure extracted by the mask distance transform (MDT) and the boundary structure extracted by the mask distance inverse transform (MDIT). Among them, the skeleton-like and boundary pay attention to the trend of interior characteristics consistency and external structure continuity, respectively. With this idea, we design GSAL, a novel end-to-end geometric structure adversarial learning for robust medical image segmentation. GSAL has four components: a geometric structure generator, which yields the geometric structure to learn the most discriminative features that preserve interior characteristics consistency and external boundary structure continuity, skeleton-like and boundary structure discriminators, which enhance and correct the characterization of internal and external geometry to mutually promote the capture of global contextual dependencies, and a geometric structure fusion sub-network, which fuses the two complementary and refined skeleton-like and boundary structures to generate the high-quality segmentation results. The proposed approach has been successfully applied to three different challenging medical image segmentation tasks, including polyp segmentation, COVID-19 lung infection segmentation, and lung nodule segmentation. Extensive experimental results demonstrate that the proposed GSAL achieves favorably against most state-of-the-art methods under different evaluation metrics. The code is available at: https://github.com/DLWK/GSAL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
jory应助科研通管家采纳,获得10
2秒前
大蛋老师应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Mine_cherry应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
jory应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
thynkz应助若枳生淮南采纳,获得50
5秒前
打打应助gab采纳,获得10
5秒前
run2where发布了新的文献求助10
5秒前
Owen应助hahahaha采纳,获得10
6秒前
有魅力的雨梅完成签到,获得积分10
6秒前
朴实问筠发布了新的文献求助10
7秒前
蝰蛇发布了新的文献求助10
7秒前
故香发布了新的文献求助10
7秒前
斯文败类应助酸菜鱼采纳,获得10
7秒前
流星噬月发布了新的文献求助10
8秒前
immm发布了新的文献求助10
9秒前
10秒前
10秒前
JamesPei应助qiuqiu采纳,获得10
12秒前
12秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594007
求助须知:如何正确求助?哪些是违规求助? 4679777
关于积分的说明 14811399
捐赠科研通 4645537
什么是DOI,文献DOI怎么找? 2534715
邀请新用户注册赠送积分活动 1502765
关于科研通互助平台的介绍 1469452