已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GSAL: Geometric structure adversarial learning for robust medical image segmentation

分割 人工智能 计算机科学 边界(拓扑) 模式识别(心理学) 计算机视觉 图像分割 尺度空间分割 判别式 数学 数学分析
作者
Kun Wang,Xiaohong Zhang,Yuting Lu,Wei Zhang,Sheng Huang,Dan Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:140: 109596-109596 被引量:9
标识
DOI:10.1016/j.patcog.2023.109596
摘要

Automatic medical image segmentation plays a crucial role in clinical diagnosis and treatment. However, it is still a challenging task due to the complex interior characteristics (e.g., inconsistent intensity, low contrast, texture heterogeneity) and ambiguous external boundary structures. In this paper, we introduce a novel geometric structure learning mechanism (GSLM) to overcome the limitations of existing segmentation models that lack learning "focus, path, and difficulty." The geometric structure in this mechanism is jointly characterized by the skeleton-like structure extracted by the mask distance transform (MDT) and the boundary structure extracted by the mask distance inverse transform (MDIT). Among them, the skeleton-like and boundary pay attention to the trend of interior characteristics consistency and external structure continuity, respectively. With this idea, we design GSAL, a novel end-to-end geometric structure adversarial learning for robust medical image segmentation. GSAL has four components: a geometric structure generator, which yields the geometric structure to learn the most discriminative features that preserve interior characteristics consistency and external boundary structure continuity, skeleton-like and boundary structure discriminators, which enhance and correct the characterization of internal and external geometry to mutually promote the capture of global contextual dependencies, and a geometric structure fusion sub-network, which fuses the two complementary and refined skeleton-like and boundary structures to generate the high-quality segmentation results. The proposed approach has been successfully applied to three different challenging medical image segmentation tasks, including polyp segmentation, COVID-19 lung infection segmentation, and lung nodule segmentation. Extensive experimental results demonstrate that the proposed GSAL achieves favorably against most state-of-the-art methods under different evaluation metrics. The code is available at: https://github.com/DLWK/GSAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风里有声音完成签到 ,获得积分10
1秒前
春山完成签到 ,获得积分10
1秒前
Haki完成签到,获得积分10
2秒前
sunsunsun完成签到,获得积分10
3秒前
等等发布了新的文献求助10
3秒前
共享精神应助shinn采纳,获得10
4秒前
4秒前
5秒前
小凯完成签到 ,获得积分10
7秒前
假期会发芽完成签到 ,获得积分10
9秒前
赵雨轩完成签到 ,获得积分10
10秒前
只如初完成签到 ,获得积分10
10秒前
等等完成签到,获得积分20
11秒前
纯真的坤完成签到,获得积分10
11秒前
sunsunsun发布了新的文献求助10
12秒前
Rondab完成签到,获得积分0
12秒前
你终硕完成签到 ,获得积分10
12秒前
迷路的台灯完成签到 ,获得积分10
14秒前
15秒前
科研通AI2S应助等等采纳,获得10
15秒前
16秒前
18秒前
bkagyin应助陈秋采纳,获得10
18秒前
9464完成签到 ,获得积分10
18秒前
h0jian09完成签到,获得积分10
21秒前
枪王阿绣完成签到 ,获得积分10
22秒前
leclare发布了新的文献求助10
22秒前
drzz完成签到,获得积分10
24秒前
JazzWon完成签到,获得积分10
25秒前
26秒前
27秒前
恋雅颖月完成签到 ,获得积分10
27秒前
Nicho发布了新的文献求助10
31秒前
酷酷阑香发布了新的文献求助10
31秒前
iNk应助无尘采纳,获得20
32秒前
Oculus完成签到 ,获得积分10
32秒前
光亮静槐完成签到 ,获得积分10
34秒前
缓慢采柳完成签到 ,获得积分10
34秒前
hjmxb完成签到,获得积分10
36秒前
NexusExplorer应助苹果秋灵采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968146
求助须知:如何正确求助?哪些是违规求助? 3513140
关于积分的说明 11166611
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794192
邀请新用户注册赠送积分活动 874904
科研通“疑难数据库(出版商)”最低求助积分说明 804629