Spectral Correlation-Based Diverse Band Selection for Hyperspectral Image Classification

高光谱成像 计算机科学 光谱带 模式识别(心理学) 人工智能 水准点(测量) 稀疏逼近 选择(遗传算法) 维数之咒 相关性 缩小 数学 遥感 地理 几何学 程序设计语言 地质学 大地测量学
作者
Mingyang Ma,Shaohui Mei,Fan Li,Yaoyang Ge,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:7
标识
DOI:10.1109/tgrs.2023.3263580
摘要

Band selection which can reduce the spectral dimensionality effectively, has become one of the most popular topics in hyperspectral image (HSI) analysis. Recently, sparse representation based band selection (BS) has emerged as a popular tool. The existing sparse models mainly focus on minimizing reconstruction error and sparsity, while do not fully exploit the unique correlations among hundreds of continuous bands, which may cause representative bands missed and highly-correlated bands selected. Therefore, this paper proposes the spectral correlation based diverse band selection (SCDBS) for HSIs to improve representativeness and diversity of the selected bands. Specifically, a correlation derived weight is used to perform weighted sparse reconstruction to select the bands that are more correlated to the whole HSI, and a correlation minimization term is designed to remove the highly-correlated bands simultaneously. In addition, the proposed method imposes an adjustable sparse constraint by using an ℓ 2,0<p≤1 norm, which extends and unifies the commonly used ℓ 2,1 norm to provide more flexible sparsity level. To optimize the proposed BS model, an iteration algorithm with relatively low computational cost is designed, of which the convergence is theoretically presented. Experimental results on three benchmark datasets have demonstrated that the proposed SCDBS outperforms state-of-the-art methods in HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyyy发布了新的文献求助10
刚刚
夜神月完成签到 ,获得积分10
刚刚
刚刚
CodeCraft应助32采纳,获得10
1秒前
1秒前
好叭发布了新的文献求助10
1秒前
zhuzhu完成签到,获得积分10
1秒前
wxx完成签到 ,获得积分10
2秒前
宽宽发布了新的文献求助10
2秒前
lulu完成签到,获得积分20
2秒前
2秒前
3秒前
英吉利25发布了新的文献求助10
3秒前
小老头儿完成签到,获得积分10
3秒前
优美的冰巧完成签到 ,获得积分10
3秒前
3秒前
忧伤的飞鸟完成签到,获得积分10
3秒前
4秒前
nb完成签到,获得积分10
4秒前
joaei完成签到 ,获得积分10
4秒前
混沌完成签到,获得积分10
4秒前
08x关闭了08x文献求助
4秒前
4秒前
4秒前
平淡的萤完成签到,获得积分10
4秒前
研友_VZG7GZ应助开朗亦绿采纳,获得10
5秒前
sun完成签到,获得积分10
5秒前
斯文败类应助tt采纳,获得10
5秒前
SunnyYim完成签到,获得积分10
5秒前
5秒前
寒天帝完成签到,获得积分10
5秒前
HM完成签到,获得积分10
5秒前
5秒前
zhouzhou发布了新的文献求助10
6秒前
幸运锦鲤完成签到,获得积分10
6秒前
zhr发布了新的文献求助10
6秒前
6秒前
自然香岚完成签到,获得积分10
7秒前
实验必成功关注了科研通微信公众号
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563