Spectral Correlation-Based Diverse Band Selection for Hyperspectral Image Classification

高光谱成像 计算机科学 光谱带 模式识别(心理学) 人工智能 水准点(测量) 稀疏逼近 选择(遗传算法) 维数之咒 相关性 缩小 数学 遥感 地理 几何学 程序设计语言 地质学 大地测量学
作者
Mingyang Ma,Shaohui Mei,Fan Li,Yaoyang Ge,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:7
标识
DOI:10.1109/tgrs.2023.3263580
摘要

Band selection which can reduce the spectral dimensionality effectively, has become one of the most popular topics in hyperspectral image (HSI) analysis. Recently, sparse representation based band selection (BS) has emerged as a popular tool. The existing sparse models mainly focus on minimizing reconstruction error and sparsity, while do not fully exploit the unique correlations among hundreds of continuous bands, which may cause representative bands missed and highly-correlated bands selected. Therefore, this paper proposes the spectral correlation based diverse band selection (SCDBS) for HSIs to improve representativeness and diversity of the selected bands. Specifically, a correlation derived weight is used to perform weighted sparse reconstruction to select the bands that are more correlated to the whole HSI, and a correlation minimization term is designed to remove the highly-correlated bands simultaneously. In addition, the proposed method imposes an adjustable sparse constraint by using an ℓ 2,0<p≤1 norm, which extends and unifies the commonly used ℓ 2,1 norm to provide more flexible sparsity level. To optimize the proposed BS model, an iteration algorithm with relatively low computational cost is designed, of which the convergence is theoretically presented. Experimental results on three benchmark datasets have demonstrated that the proposed SCDBS outperforms state-of-the-art methods in HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Gaojin锦采纳,获得10
刚刚
刚刚
昊昊发布了新的文献求助10
刚刚
脑洞疼应助牛马采纳,获得10
刚刚
爆米花应助dyuguo3采纳,获得10
刚刚
旰旰旰发布了新的文献求助10
刚刚
万能图书馆应助牛马采纳,获得10
刚刚
萨特完成签到,获得积分10
1秒前
2微恙发布了新的文献求助10
1秒前
隐形曼青应助个性的皮带采纳,获得10
1秒前
852应助yuanya采纳,获得10
1秒前
Anna发布了新的文献求助10
1秒前
1秒前
阿喵完成签到,获得积分10
2秒前
复杂从梦完成签到,获得积分10
2秒前
陈大星啊发布了新的文献求助10
2秒前
jing发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
希望天下0贩的0应助jiaxuan采纳,获得10
3秒前
现代的冰珍完成签到,获得积分10
4秒前
团团团发布了新的文献求助10
5秒前
云那边的山完成签到,获得积分10
5秒前
丘比特应助任秦采纳,获得10
5秒前
5秒前
Ling完成签到,获得积分10
6秒前
直率书芹完成签到,获得积分10
6秒前
zhuchunjie发布了新的文献求助10
6秒前
牛的滑发布了新的文献求助10
7秒前
文静谷冬发布了新的文献求助10
7秒前
CC完成签到,获得积分10
7秒前
8秒前
lia发布了新的文献求助10
8秒前
林深完成签到,获得积分10
8秒前
粥粥完成签到 ,获得积分10
9秒前
lourahan发布了新的文献求助20
9秒前
爆米花应助polee采纳,获得20
10秒前
杨威发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060