Spectral Correlation-Based Diverse Band Selection for Hyperspectral Image Classification

高光谱成像 计算机科学 光谱带 模式识别(心理学) 人工智能 水准点(测量) 稀疏逼近 选择(遗传算法) 维数之咒 相关性 缩小 数学 遥感 地理 几何学 程序设计语言 地质学 大地测量学
作者
Mingyang Ma,Shaohui Mei,Fan Li,Yaoyang Ge,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:7
标识
DOI:10.1109/tgrs.2023.3263580
摘要

Band selection which can reduce the spectral dimensionality effectively, has become one of the most popular topics in hyperspectral image (HSI) analysis. Recently, sparse representation based band selection (BS) has emerged as a popular tool. The existing sparse models mainly focus on minimizing reconstruction error and sparsity, while do not fully exploit the unique correlations among hundreds of continuous bands, which may cause representative bands missed and highly-correlated bands selected. Therefore, this paper proposes the spectral correlation based diverse band selection (SCDBS) for HSIs to improve representativeness and diversity of the selected bands. Specifically, a correlation derived weight is used to perform weighted sparse reconstruction to select the bands that are more correlated to the whole HSI, and a correlation minimization term is designed to remove the highly-correlated bands simultaneously. In addition, the proposed method imposes an adjustable sparse constraint by using an ℓ 2,0<p≤1 norm, which extends and unifies the commonly used ℓ 2,1 norm to provide more flexible sparsity level. To optimize the proposed BS model, an iteration algorithm with relatively low computational cost is designed, of which the convergence is theoretically presented. Experimental results on three benchmark datasets have demonstrated that the proposed SCDBS outperforms state-of-the-art methods in HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmmm完成签到,获得积分10
刚刚
洁净白容完成签到,获得积分10
刚刚
大个应助孟孟采纳,获得10
刚刚
小镇的废物完成签到,获得积分10
刚刚
柴郡喵完成签到,获得积分10
1秒前
SYLH应助小熊采纳,获得10
2秒前
妹妹发布了新的文献求助10
2秒前
2秒前
赘婿应助我必定发nature采纳,获得20
3秒前
Ava应助kofbird采纳,获得50
4秒前
zz完成签到,获得积分10
4秒前
星辰大海应助ybwei2008_163采纳,获得10
4秒前
6秒前
6秒前
QJYKKK完成签到,获得积分10
6秒前
composite66完成签到,获得积分10
6秒前
ccchao发布了新的文献求助30
7秒前
充电宝应助十三采纳,获得10
7秒前
大个应助橙橙橙采纳,获得10
7秒前
Dandanhuang完成签到,获得积分10
7秒前
FashionBoy应助孟孟采纳,获得30
9秒前
畅快的刚完成签到,获得积分10
11秒前
11秒前
xxxx完成签到,获得积分10
11秒前
vain发布了新的文献求助10
11秒前
李健应助芒果小鹌鹑采纳,获得10
11秒前
cc完成签到,获得积分10
12秒前
这个名字是不是独一无二完成签到,获得积分10
12秒前
颗粒完成签到,获得积分10
13秒前
13秒前
javeeen完成签到,获得积分10
14秒前
应俊完成签到 ,获得积分10
14秒前
1234完成签到 ,获得积分10
15秒前
轻松元柏完成签到,获得积分10
16秒前
WN发布了新的文献求助10
16秒前
16秒前
我必定发nature给我必定发nature的求助进行了留言
17秒前
组织因子发布了新的文献求助10
17秒前
18秒前
Sadgenius完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048