RF-CM

计算机科学 雷达 无线电频率 杠杆(统计) 实时计算 人工智能 电信
作者
Xuan Wang,Tong Liu,Chao Feng,Dingyi Fang,Xiaojiang Chen
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (1): 1-28 被引量:3
标识
DOI:10.1145/3580859
摘要

Radio-Frequency (RF) based human activity recognition (HAR) enables many attractive applications such as smart home, health monitoring, and virtual reality (VR). Among multiple RF sensors, mmWave radar is emerging as a new trend due to its fine-grained sensing capability. However, laborious data collection and labeling processes are required when employing a radar-based sensing system in a new environment. To this end, we propose RF-CM, a general cross-modal human activity recognition framework. The key enabler is to leverage the knowledge learned from a massive WiFi dataset to build a radar-based HAR system with limited radar samples. It can significantly reduce the overhead of training data collection. In addition, RF-CM can work well regardless of the deployment setups of WiFi and mmWave radar, such as performing environments, users' characteristics, and device deployment. RF-CM achieves this by first capturing the activity-related variation patterns through data processing schemes. It then employs a convolution neural network-based feature extraction module to extract the high-dimensional features to be fed into the activity recognition module. Finally, RF-CM takes the generalization knowledge from WiFi networks as guide labels to supervise the training of the radar model, thus enabling a few-shot radar-based HAR system. We evaluate RF-CM by applying it to two HAR applications, fine-grained American sign language recognition (WiFi-cross-radar) and coarse-grained gesture recognition (WiFi-cross-RFID). The accuracy improvement of over 10% in both applications demonstrates the effectiveness of RF-CM. This cross-modal ability allows RF-CM to support more cross-modal applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮诗桃发布了新的文献求助10
刚刚
Zz完成签到 ,获得积分10
2秒前
李爱国应助泽灵采纳,获得10
2秒前
小西贝完成签到 ,获得积分10
2秒前
4秒前
5秒前
夏远航发布了新的文献求助10
5秒前
szj完成签到,获得积分10
6秒前
脑洞疼应助光亮诗桃采纳,获得10
6秒前
6秒前
Li_C完成签到,获得积分10
6秒前
Gleaming完成签到,获得积分10
6秒前
7秒前
zxt12305313完成签到 ,获得积分10
8秒前
小马甲应助ming采纳,获得10
8秒前
8秒前
杨自强完成签到,获得积分10
9秒前
英俊凡波发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
no_one完成签到,获得积分10
11秒前
liuyushi完成签到,获得积分20
11秒前
小白发布了新的文献求助10
12秒前
暴躁的元珊完成签到,获得积分10
12秒前
华仔应助只想学习采纳,获得10
13秒前
12ocky发布了新的文献求助10
13秒前
14秒前
假萌发布了新的文献求助10
14秒前
mike5492发布了新的文献求助10
15秒前
夏远航完成签到,获得积分0
15秒前
neinei778发布了新的文献求助10
16秒前
liuyushi发布了新的文献求助30
17秒前
爱撒娇的橘子完成签到,获得积分10
17秒前
金一完成签到 ,获得积分10
18秒前
19秒前
小绵羊完成签到 ,获得积分10
19秒前
20秒前
20秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292382
求助须知:如何正确求助?哪些是违规求助? 2928703
关于积分的说明 8438278
捐赠科研通 2600816
什么是DOI,文献DOI怎么找? 1419277
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921