糖尿病性视网膜病变
分类器(UML)
失明
人工智能
眼底(子宫)
计算机科学
特征提取
模式识别(心理学)
深度学习
视网膜病变
视网膜
医学
眼科
验光服务
糖尿病
内分泌学
作者
Sheena Christabel Pravin,Sindhu Priya Kanaga Sabapathy,Suganthi Selvakumar,Saranya Jayaraman,Selvakumar Varadharajan Subramani
标识
DOI:10.46604/ijeti.2023.10045
摘要
This study aims to propose a novel deep learning framework, i.e., efficient DenseNet, for identifying diabetic retinopathy severity levels in retinal images. Diabetic retinopathy is an eye condition that damages blood vessels in the retina. Detecting diabetic retinopathy at the early stage can avoid retinal detachment and effects leading to blindness in diabetic adults. A thin-layered efficient DenseNet model has been proposed with fewer training learnable parameters, leading to higher classification accuracy than the other deep learning models. The proposed deep learning framework for diabetic retinopathy severity level detection has an inbuilt automatic pre-processing module. Afterward, the efficient DenseNet model and classifier will provide data augmentation and higher-level feature extraction. The proposed efficient DenseNet framework is trained and tested using 13000 retinal fundus images within the diabetic retinopathy database and combined with the k-nearest neighbor classifier demonstrating the best classification accuracy of 98.40%.
科研通智能强力驱动
Strongly Powered by AbleSci AI