Human-Centric Transformer for Domain Adaptive Action Recognition

计算机科学 动作识别 人工智能 变压器 模式识别(心理学) 计算机视觉 工程类 电压 电气工程 班级(哲学)
作者
Kun-Yu Lin,Jiaming Zhou,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:3
标识
DOI:10.1109/tpami.2024.3429387
摘要

We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit human cues in videos when recognizing actions across domains. However, existing methods are prone to losing human cues but prefer to exploit the correlation between non-human contexts and associated actions for recognition, and the contexts of interest agnostic to actions would reduce recognition performance in the target domain. To overcome this problem, we focus on uncovering human-centric action cues for domain adaptive action recognition, and our conception is to investigate two aspects of human-centric action cues, namely human cues and human-context interaction cues. Accordingly, our proposed Human-Centric Transformer (HCTransformer) develops a decoupled human-centric learning paradigm to explicitly concentrate on human-centric action cues in domain-variant video feature learning. Our HCTransformer first conducts human-aware temporal modeling by a human encoder, aiming to avoid a loss of human cues during domain-invariant video feature learning. Then, by a Transformer-like architecture, HCTransformer exploits domain-invariant and action-correlated contexts by a context encoder, and further models domain-invariant interaction between humans and action-correlated contexts. We conduct extensive experiments on three benchmarks, namely UCF-HMDB, Kinetics-NecDrone and EPIC-Kitchens-UDA, and the state-of-the-art performance demonstrates the effectiveness of our proposed HCTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天来了发布了新的文献求助10
刚刚
ding应助和花花采纳,获得10
刚刚
2秒前
3秒前
在水一方应助彭维楚采纳,获得10
3秒前
5秒前
Cherry完成签到 ,获得积分10
5秒前
5秒前
咸心厚皮橙完成签到,获得积分10
6秒前
6秒前
在水一方应助Oay采纳,获得10
6秒前
000发布了新的文献求助10
7秒前
文静三颜发布了新的文献求助10
7秒前
奋斗绿旋发布了新的文献求助10
9秒前
慕青应助kento采纳,获得100
9秒前
科目三应助淡定思枫采纳,获得10
10秒前
星辰大海应助幽默发夹采纳,获得10
10秒前
11秒前
hh发布了新的文献求助10
11秒前
我可厉害了完成签到,获得积分10
12秒前
Xiaochou完成签到,获得积分20
12秒前
cheng完成签到,获得积分10
13秒前
haheihe发布了新的文献求助10
13秒前
叉猹的闰土应助文静三颜采纳,获得10
13秒前
jdh完成签到,获得积分10
14秒前
15秒前
wanci应助搂猫睡觉的鱼采纳,获得10
16秒前
16秒前
坚强的蚂蚁完成签到,获得积分10
17秒前
17秒前
希望天下0贩的0应助曹kn采纳,获得10
17秒前
17秒前
17秒前
大个应助Seldomyg采纳,获得10
18秒前
19秒前
000完成签到,获得积分10
19秒前
20秒前
20秒前
lalala发布了新的文献求助10
20秒前
李爱国应助111111111采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554493
求助须知:如何正确求助?哪些是违规求助? 3130313
关于积分的说明 9386036
捐赠科研通 2829580
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715480