半纤维素
秆
纤维素
傅里叶变换红外光谱
红外光谱学
吞吐量
红外线的
造纸
光谱学
木质素
傅里叶变换
内容(测量理论)
材料科学
化学
制浆造纸工业
人工智能
计算机科学
化学工程
复合材料
工程类
数学
光学
物理
生物
园艺
有机化学
无线
电信
数学分析
量子力学
作者
Fanghui Chen,Xingyue Liu,Chengchen Lu,Mingxiu Ruan,Yujing Wen,Sheng Wang,Youhong Song,Lin Li,Liang Zhou,Haiyang Jiang,Leiming Wu
标识
DOI:10.1016/j.biortech.2024.131531
摘要
Cellulose and hemicellulose are key cross-linked carbohydrates affecting bioethanol production in maize stalks. Traditional wet chemical methods for their detection are labor-intensive, highlighting the need for high-throughput techniques. This study used Fourier transform infrared (FTIR) spectroscopy combined with machine learning (ML) algorithms on 200 large-scale maize germplasms to develop robust predictive models for stalk cellulose, hemicellulose and holocellulose content. We identified several peak height features correlated with three contents, used them as input data for model building. Four ML algorithms demonstrated higher predictive accuracy, achieving coefficient of determination (R
科研通智能强力驱动
Strongly Powered by AbleSci AI