Prediction of MRI R2*$$ {\mathrm{R}}_2^{\ast } $$ relaxometry in the presence of hepatic steatosis by Monte Carlo simulations

蒙特卡罗方法 信号(编程语言) 体内 脂肪变性 核磁共振 化学 材料科学 核医学 物理 数学 医学 统计 内科学 计算机科学 生物 生物技术 程序设计语言
作者
Mengyuan Ma,Junying Cheng,Xiaoben Li,Zhuangzhuang Fan,Changqing Wang,Scott B. Reeder,Diego Hernando
出处
期刊:NMR in Biomedicine [Wiley]
标识
DOI:10.1002/nbm.5274
摘要

Abstract To develop Monte Carlo simulations to predict the relationship of with liver fat content at 1.5 T and 3.0 T. For various fat fractions (FFs) from 1% to 25%, four types of virtual liver models were developed by incorporating the size and spatial distribution of fat droplets. Magnetic fields were then generated under different fat susceptibilities at 1.5 T and 3.0 T, and proton movement was simulated for phase accrual and MRI signal synthesis. The synthesized signal was fit to single‐peak and multi‐peak fat signal models for and proton density fat fraction (PDFF) predictions. In addition, the relationships between and PDFF predictions were compared with in vivo calibrations and Bland–Altman analysis was performed to quantitatively evaluate the effects of these components (type of virtual liver model, fat susceptibility, and fat signal model) on predictions. A virtual liver model with realistic morphology of fat droplets was demonstrated, and and PDFF values were predicted by Monte Carlo simulations at 1.5 T and 3.0 T. predictions were linearly correlated with PDFF, while the slope was unaffected by the type of virtual liver model and increased as fat susceptibility increased. Compared with in vivo calibrations, the multi‐peak fat signal model showed superior performance to the single‐peak fat signal model, which yielded an underestimation of liver fat. The ‐PDFF relationships by simulations with fat susceptibility of 0.6 ppm and the multi‐peak fat signal model were (, ) at 1.5 T and (, ) at 3.0 T. Monte Carlo simulations provide a new means for ‐PDFF prediction, which is primarily determined by fat susceptibility, fat signal model, and magnetic field strength. Accurate ‐PDFF calibration has the potential to correct the effect of fat on quantification, and may be helpful for accurate measurements in liver iron overload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助正在通话中采纳,获得10
1秒前
1秒前
mjr完成签到,获得积分10
2秒前
思源应助WHITE采纳,获得10
2秒前
3秒前
久卿晚完成签到,获得积分10
3秒前
cxh发布了新的文献求助10
4秒前
彩色毛巾完成签到,获得积分10
5秒前
科研通AI5应助等风来采纳,获得10
5秒前
何仁杰完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研小民工应助科研通管家采纳,获得100
8秒前
ATLI应助科研通管家采纳,获得20
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
che应助科研通管家采纳,获得10
9秒前
9秒前
浅忆发布了新的文献求助10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
大模型应助小河采纳,获得30
10秒前
木质素爱好者完成签到,获得积分10
10秒前
11秒前
huhdcid发布了新的文献求助10
12秒前
嘟嘟嘟嘟完成签到,获得积分10
12秒前
12秒前
13秒前
dream_pillow发布了新的文献求助30
13秒前
13秒前
hqq发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Scher and Daniel's Nails 200
Examining the factors affecting users' payment intention of video knowledge products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698209
求助须知:如何正确求助?哪些是违规求助? 3249308
关于积分的说明 9863091
捐赠科研通 2960885
什么是DOI,文献DOI怎么找? 1623718
邀请新用户注册赠送积分活动 768840
科研通“疑难数据库(出版商)”最低求助积分说明 741904