Rapid enhanced-DEM using Google Earth Engine, machine learning, weighted and spatial interpolation techniques

插值(计算机图形学) 计算机科学 土(古典元素) 人工智能 汽车工程 工程类 数学 数学物理 运动(物理)
作者
Walaa Metwally kandil,Fawzi Zarzoura,Mahmoud Salah Goma,Mahmoud El-Mewafi El-Mewafi Shetiwi
出处
期刊:World Journal of Engineering [Emerald Publishing Limited]
标识
DOI:10.1108/wje-05-2024-0315
摘要

Purpose This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial interpolation techniques with ground control points (GCPs), where high-resolution DEMs are crucial spatial data that find extensive use in many analyses and applications. Design/methodology/approach First, rapid-DEM imports Shuttle Radar Topography Mission (SRTM) data and Sentinel-2 multispectral imagery from a user-defined time and area of interest into GEE. Second, SRTM with the feature attributes from Sentinel-2 multispectral imagery is generated and used as input data in support vector machine classification algorithm. Third, the inverse probability weighted interpolation (IPWI) approach uses 12 fixed GCPs as additional input data to assign the probability to each pixel of the image and generate corrected SRTM elevations. Fourth, gridding the enhanced DEM consists of regular points (E, N and H), and the contour interval is 5 m. Finally, densification of enhanced DEM data with GCPs is obtained using global positioning system technique through spatial interpolations such as Kriging, inverse distance weighted, modified Shepard’s method and triangulation with linear interpolation techniques. Findings The results were compared to a 1-m vertically accurate reference DEM (RD) obtained by image matching with Worldview-1 stereo satellite images. The results of this study demonstrated that the root mean square error (RMSE) of the original SRTM DEM was 5.95 m. On the other hand, the RMSE of the estimated elevations by the IPWI approach has been improved to 2.01 m, and the generated DEM by Kriging technique was 1.85 m, with a reduction of 68.91%. Originality/value A comparison with the RD demonstrates significant SRTM improvements. The suggested method clearly reduces the elevation error of the original SRTM DEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助FXQ123_范采纳,获得10
刚刚
CipherSage应助青野采纳,获得10
1秒前
无语的沛春完成签到,获得积分10
1秒前
wxp19发布了新的文献求助20
1秒前
tianya完成签到,获得积分10
2秒前
完美世界应助sunshine采纳,获得10
2秒前
科研通AI2S应助马er采纳,获得10
3秒前
skbkbe完成签到,获得积分10
3秒前
3秒前
CAOHOU应助酷酷银耳汤采纳,获得10
3秒前
4秒前
7秒前
高贵梦露发布了新的文献求助10
9秒前
11秒前
12秒前
GL发布了新的文献求助10
12秒前
乐乐应助如意枫叶采纳,获得10
12秒前
13秒前
史念薇发布了新的文献求助10
13秒前
xixi完成签到 ,获得积分10
13秒前
15秒前
青野发布了新的文献求助10
17秒前
20秒前
21秒前
高贵梦露完成签到,获得积分10
21秒前
23秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
如意枫叶发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
30秒前
31秒前
32秒前
赘婿应助GL采纳,获得10
32秒前
33秒前
33秒前
Archer宇完成签到,获得积分10
33秒前
狸花小喵发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136