Rapid enhanced-DEM using Google Earth Engine, machine learning, weighted and spatial interpolation techniques

插值(计算机图形学) 计算机科学 土(古典元素) 人工智能 汽车工程 工程类 数学 数学物理 运动(物理)
作者
Walaa Metwally Kandil,Fawzi Zarzoura,Mahmoud Salah Goma,Mahmoud El-Mewafi El-Mewafi Shetiwi
出处
期刊:World Journal of Engineering [Emerald (MCB UP)]
标识
DOI:10.1108/wje-05-2024-0315
摘要

Purpose This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial interpolation techniques with ground control points (GCPs), where high-resolution DEMs are crucial spatial data that find extensive use in many analyses and applications. Design/methodology/approach First, rapid-DEM imports Shuttle Radar Topography Mission (SRTM) data and Sentinel-2 multispectral imagery from a user-defined time and area of interest into GEE. Second, SRTM with the feature attributes from Sentinel-2 multispectral imagery is generated and used as input data in support vector machine classification algorithm. Third, the inverse probability weighted interpolation (IPWI) approach uses 12 fixed GCPs as additional input data to assign the probability to each pixel of the image and generate corrected SRTM elevations. Fourth, gridding the enhanced DEM consists of regular points (E, N and H), and the contour interval is 5 m. Finally, densification of enhanced DEM data with GCPs is obtained using global positioning system technique through spatial interpolations such as Kriging, inverse distance weighted, modified Shepard’s method and triangulation with linear interpolation techniques. Findings The results were compared to a 1-m vertically accurate reference DEM (RD) obtained by image matching with Worldview-1 stereo satellite images. The results of this study demonstrated that the root mean square error (RMSE) of the original SRTM DEM was 5.95 m. On the other hand, the RMSE of the estimated elevations by the IPWI approach has been improved to 2.01 m, and the generated DEM by Kriging technique was 1.85 m, with a reduction of 68.91%. Originality/value A comparison with the RD demonstrates significant SRTM improvements. The suggested method clearly reduces the elevation error of the original SRTM DEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
拼搏的金针菇完成签到 ,获得积分10
3秒前
酷酷剑通发布了新的文献求助10
3秒前
3秒前
希望天下0贩的0应助jhxie采纳,获得10
5秒前
热心市民小红花完成签到,获得积分0
5秒前
钊钊照照朝朝完成签到,获得积分10
6秒前
7秒前
7秒前
资深咸鱼发布了新的文献求助10
7秒前
小李新人完成签到 ,获得积分10
7秒前
称心不尤完成签到,获得积分10
10秒前
刘jinkai发布了新的文献求助10
10秒前
辛夷坞关注了科研通微信公众号
10秒前
11秒前
科研通AI2S应助123采纳,获得10
13秒前
joy完成签到 ,获得积分10
14秒前
SciGPT应助Yuri采纳,获得10
17秒前
科研通AI2S应助winner采纳,获得10
17秒前
ikki发布了新的文献求助10
18秒前
18秒前
严冰蝶完成签到 ,获得积分10
19秒前
慕青应助ikki采纳,获得10
21秒前
111完成签到,获得积分20
22秒前
wanci应助QX采纳,获得10
23秒前
健忘丹珍完成签到,获得积分10
25秒前
酷酷剑通完成签到,获得积分10
25秒前
咳咳哼完成签到,获得积分10
26秒前
27秒前
共享精神应助ponytail采纳,获得10
27秒前
111发布了新的文献求助30
29秒前
彩色嚣完成签到 ,获得积分10
29秒前
互助遵法尚德应助泥花采纳,获得10
30秒前
song关注了科研通微信公众号
30秒前
31秒前
江风海韵完成签到,获得积分10
32秒前
jhxie发布了新的文献求助10
32秒前
清脆的不二完成签到,获得积分20
34秒前
科研通AI2S应助劣根采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079