Accurate and computationally efficient basis function generation using physics informed neural networks

基础(线性代数) 人工神经网络 功能(生物学) 计算机科学 人工智能 统计物理学 物理 数学 生物 几何学 进化生物学
作者
Nathan Cloud,Benjamin M. Goldsberry,Michael R. Haberman
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:155 (3_Supplement): A143-A143
标识
DOI:10.1121/10.0027098
摘要

Basis functions that can accurately represent simulated or measured acoustic pressure fields with a small number of degrees of freedom is of great use across various applications, including finite element methods, model order reduction, and compressive sensing. In a previous work [B. M. Goldsberry, J. Acoust. Soc. Am. 153, A193 (2023)], basis functions were derived for an element in a given mesh using a combination of interpolation functions defined on the boundaries of the element and the Helmholtz-Kirchhoff (HK) integral. This forms a new interpolatory basis set that efficiently and accurately represents the interior of the element. However, the previous analysis was limited to a two-dimensional rectangular element. In this work, physics informed neural networks (PINN) are investigated as a means to generate HK basis functions for general element shapes. PINNs have been previously shown to accurately learn solutions to parameterized partial differential equations. The element geometry parameterization and the boundary interpolation functions are given as inputs to the PINN, and the output of the PINN consists of the physically accurate basis functions within the element. Details on the implementation and training requirements on the PINN to achieve a desired accuracy will be discussed. [Work supported by ONR.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小白完成签到,获得积分10
2秒前
艾欧大贝发布了新的文献求助10
2秒前
duxixixi完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Akim应助gaojing采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
善学以致用应助王芳采纳,获得10
6秒前
Jacob发布了新的文献求助10
7秒前
今后应助Hyunstar采纳,获得10
7秒前
8秒前
nicklp完成签到,获得积分10
10秒前
alexia_liang完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
fgehfd发布了新的文献求助10
12秒前
12秒前
大个应助rock采纳,获得10
13秒前
Jasper应助nana采纳,获得10
13秒前
希望天下0贩的0应助二闲采纳,获得10
13秒前
14秒前
正直水池完成签到 ,获得积分10
14秒前
摩天大楼完成签到,获得积分10
14秒前
15秒前
15秒前
delia完成签到 ,获得积分10
15秒前
renyi发布了新的文献求助10
16秒前
17秒前
April发布了新的文献求助30
18秒前
桐桐应助gaojing采纳,获得10
18秒前
19秒前
橘子海发布了新的文献求助10
19秒前
shi完成签到,获得积分10
19秒前
20秒前
20秒前
Hyunstar发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096886
求助须知:如何正确求助?哪些是违规求助? 4309433
关于积分的说明 13427326
捐赠科研通 4136817
什么是DOI,文献DOI怎么找? 2266341
邀请新用户注册赠送积分活动 1269474
关于科研通互助平台的介绍 1205738