Accurate and computationally efficient basis function generation using physics informed neural networks

基础(线性代数) 人工神经网络 功能(生物学) 计算机科学 人工智能 统计物理学 物理 数学 生物 几何学 进化生物学
作者
Nathan Cloud,Benjamin M. Goldsberry,Michael R. Haberman
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:155 (3_Supplement): A143-A143
标识
DOI:10.1121/10.0027098
摘要

Basis functions that can accurately represent simulated or measured acoustic pressure fields with a small number of degrees of freedom is of great use across various applications, including finite element methods, model order reduction, and compressive sensing. In a previous work [B. M. Goldsberry, J. Acoust. Soc. Am. 153, A193 (2023)], basis functions were derived for an element in a given mesh using a combination of interpolation functions defined on the boundaries of the element and the Helmholtz-Kirchhoff (HK) integral. This forms a new interpolatory basis set that efficiently and accurately represents the interior of the element. However, the previous analysis was limited to a two-dimensional rectangular element. In this work, physics informed neural networks (PINN) are investigated as a means to generate HK basis functions for general element shapes. PINNs have been previously shown to accurately learn solutions to parameterized partial differential equations. The element geometry parameterization and the boundary interpolation functions are given as inputs to the PINN, and the output of the PINN consists of the physically accurate basis functions within the element. Details on the implementation and training requirements on the PINN to achieve a desired accuracy will be discussed. [Work supported by ONR.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dreamlightzy应助欢喜从霜采纳,获得10
刚刚
Ukiss完成签到 ,获得积分10
2秒前
天空之下发布了新的文献求助10
3秒前
852应助余启家采纳,获得10
4秒前
林先生完成签到,获得积分10
5秒前
5秒前
5秒前
研友_VZG7GZ应助安详晓亦采纳,获得10
6秒前
砯硑完成签到,获得积分10
7秒前
我是老大应助简单雨安采纳,获得10
7秒前
研友_VZG7GZ应助胡质斌采纳,获得10
9秒前
老福贵儿应助zf采纳,获得10
10秒前
小虾米发布了新的文献求助10
10秒前
悦悦完成签到 ,获得积分10
10秒前
11秒前
Ava应助猫车高手采纳,获得10
12秒前
12秒前
余启家完成签到,获得积分10
13秒前
13秒前
13秒前
老福贵儿应助ysk采纳,获得10
14秒前
卷卷卷儿关注了科研通微信公众号
15秒前
916应助南_采纳,获得10
15秒前
16秒前
Dawn完成签到,获得积分10
16秒前
小虾米完成签到,获得积分10
16秒前
17秒前
王粒发布了新的文献求助10
17秒前
白熊发布了新的文献求助10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
苯二氮卓发布了新的文献求助10
18秒前
FashionBoy应助科研通管家采纳,获得50
18秒前
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415190
求助须知:如何正确求助?哪些是违规求助? 4531851
关于积分的说明 14130607
捐赠科研通 4447388
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431793
关于科研通互助平台的介绍 1409400