Accurate and computationally efficient basis function generation using physics informed neural networks

基础(线性代数) 人工神经网络 功能(生物学) 计算机科学 人工智能 统计物理学 物理 数学 生物 几何学 进化生物学
作者
Nathan Cloud,Benjamin M. Goldsberry,Michael R. Haberman
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:155 (3_Supplement): A143-A143
标识
DOI:10.1121/10.0027098
摘要

Basis functions that can accurately represent simulated or measured acoustic pressure fields with a small number of degrees of freedom is of great use across various applications, including finite element methods, model order reduction, and compressive sensing. In a previous work [B. M. Goldsberry, J. Acoust. Soc. Am. 153, A193 (2023)], basis functions were derived for an element in a given mesh using a combination of interpolation functions defined on the boundaries of the element and the Helmholtz-Kirchhoff (HK) integral. This forms a new interpolatory basis set that efficiently and accurately represents the interior of the element. However, the previous analysis was limited to a two-dimensional rectangular element. In this work, physics informed neural networks (PINN) are investigated as a means to generate HK basis functions for general element shapes. PINNs have been previously shown to accurately learn solutions to parameterized partial differential equations. The element geometry parameterization and the boundary interpolation functions are given as inputs to the PINN, and the output of the PINN consists of the physically accurate basis functions within the element. Details on the implementation and training requirements on the PINN to achieve a desired accuracy will be discussed. [Work supported by ONR.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助zimo采纳,获得10
刚刚
刚刚
今后应助kid采纳,获得10
1秒前
1秒前
Brown完成签到,获得积分10
2秒前
zzz发布了新的文献求助10
2秒前
xiaoliu完成签到,获得积分10
3秒前
3秒前
4秒前
dglyl发布了新的文献求助10
4秒前
科研通AI6应助lc采纳,获得10
5秒前
6秒前
自觉的丹珍完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
崽崽发布了新的文献求助10
9秒前
无花果应助背后的广山采纳,获得10
9秒前
共享精神应助小白采纳,获得10
9秒前
9秒前
ZL完成签到,获得积分10
10秒前
淡然冬灵发布了新的文献求助10
10秒前
营长完成签到 ,获得积分10
10秒前
10秒前
10秒前
diguohu发布了新的文献求助10
11秒前
13秒前
red发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
15秒前
失眠采白完成签到,获得积分10
15秒前
Jocelyn完成签到,获得积分10
15秒前
16秒前
pkouji发布了新的文献求助10
16秒前
个性的紫菜应助彩色青亦采纳,获得10
16秒前
lsq完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858