LSTM-NAS-Net: Enhanced Brain Tumor Segmentation in MRI and CT Images using LSTM-Autoencoder-based Neural Architecture Search

自编码 人工智能 分割 计算机科学 人工神经网络 模式识别(心理学) 建筑 地理 考古
作者
Santhosh Santhosh,S. Sasirekha,R. Santhosh
出处
期刊:Journal of cybersecurity and information management 卷期号:14 (2): 70-86
标识
DOI:10.54216/jcim.140205
摘要

Brain Tumour (BT) a mass or a lump or a growth which occurs due to abnormal cell division or unusual growth of cells in the brain tissue. Initially, the two major types of BT are Primary BT and Secondary BT, the tumour that originate from brain is known as Primary BT and it may be cancerous or non-cancerous. The tumour the initiates from other part of the body and spreads to the brain is stated as secondary BT. Diagnosing BT generally involves a multiple investigation method, such as MRI, CT, PET, SPECT as well as the neurological examinations and blood investigations, whereas some of the patients may need biopsies to evaluate the tumour size and stage. Here we use MRI and CT images for BT segmentation whereas these modalities play a major role in diagnosing, treating, planning and monitoring the BT patients. Moreover, the multimodal data can provide a quantitative information’s about the tumour size, shape, volume and texture. While segmenting the BT the lack of segmentation methods and the interpretability of the segmented regions are limited. To overcome this, we propose a novel LSTM autoencoder bas NAS method which is used for the extracting the BT features and these features can be fused using Contextual Integration Module (CIM) and segmented using the Segmentation Guided Regulizer (SGR) which helps to overcome the stated issues. Finally, the performance metrices are calculated by comparing with the state-of -the -art methods and our method achieves a best segmenting metrices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的嚣完成签到,获得积分10
刚刚
weiwei完成签到 ,获得积分10
2秒前
受伤的冰海完成签到 ,获得积分10
2秒前
2秒前
跳跃的幻丝完成签到 ,获得积分10
2秒前
priss111应助轻松的蜜粉采纳,获得40
3秒前
5秒前
yyl关闭了yyl文献求助
7秒前
8秒前
落雪完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
碧蓝的尔珍完成签到,获得积分10
14秒前
跳跃曼文发布了新的文献求助10
15秒前
瓜子发布了新的文献求助10
16秒前
ddddddd完成签到 ,获得积分10
18秒前
20秒前
沐夕完成签到,获得积分10
23秒前
fd发布了新的文献求助10
25秒前
25秒前
王小妍的王完成签到,获得积分10
26秒前
可爱的石头完成签到,获得积分10
28秒前
啦啦啦发布了新的文献求助10
30秒前
花非花雾非雾完成签到,获得积分10
32秒前
在水一方应助逸风望采纳,获得10
32秒前
充电宝应助打我呀采纳,获得10
32秒前
JYQ发布了新的文献求助20
33秒前
34秒前
35秒前
37秒前
39秒前
雪白不斜发布了新的文献求助10
41秒前
liangxianli发布了新的文献求助10
41秒前
Yang发布了新的文献求助10
44秒前
45秒前
shuangfeng1853完成签到 ,获得积分10
47秒前
zxq1996完成签到 ,获得积分10
48秒前
井野浮应助葵葵采纳,获得10
49秒前
49秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233052
求助须知:如何正确求助?哪些是违规求助? 2879715
关于积分的说明 8212369
捐赠科研通 2547202
什么是DOI,文献DOI怎么找? 1376619
科研通“疑难数据库(出版商)”最低求助积分说明 647677
邀请新用户注册赠送积分活动 623067