Trivalent Cation Defect Optimization Spin State of Nickel(II) in NiFe-Layered Double Hydroxide Nanosheets for Oxygen Evolution

氢氧化物 析氧 材料科学 氧气 自旋态 自旋(空气动力学) 无机化学 化学工程 化学 冶金 物理化学 物理 电极 电化学 有机化学 工程类 热力学
作者
Xiaobao Zhang,Haohai Dong,Haomin Jiang,Jie Wu,Tongyue Wang,Gaowei Zhang,Kefan Shi,Lin Chen,Jie Li,Yunming Xu,Lanke Luo,Ruikun Xu,Jiongjun Wu,Zemin Sun,Liu Lin,Genban Sun
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (14): 17092-17100 被引量:3
标识
DOI:10.1021/acsanm.4c03352
摘要

The defects have been confirmed to activate catalytic sites and significantly enhance electrocatalytic activity. However, the influence of defects on the electronic spin state of catalytic active sites and their impact on catalytic behavior are still in the early stages of research. Spin behavior is a fundamental property of the electrons. Herein, using NiFe-LDH nanosheets as the model structure, we constructed trivalent cation vacancy models to gain a deeper understanding of the intrinsic relationship among defects, spin, and catalytic activity from the perspective of the electronic spin state. The presence of defects leads to an increased proportion of the dz2 orbital perpendicular to the plane and the dxy orbital parallel to the LDH layer, which enhancement effectively improves the capture of out-of-plane oxygen intermediates and facilitates electron transfer within the plane. As a result, the catalytic activity for the oxygen evolution reaction (OER) is greatly improved. In addition, magnetic field experiments may also be used to better understand the role of spin in the catalytic process. With the increase of defect concentration, the spin-magnetic response intensity of the OER can be effectively enhanced, which is related to the defect-induced spin single electron. This work explains how defects can effectively modulate the electron spin properties of active centers, thereby achieving enhanced catalytic reaction kinetics. By shedding light on the principles governing catalytic sites at the electron spin level, we would aid in the understanding and design of catalysts at the spintronic level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的白羊完成签到,获得积分10
刚刚
mit完成签到,获得积分10
2秒前
2秒前
yi完成签到 ,获得积分10
2秒前
4秒前
张瀚文发布了新的文献求助10
5秒前
BYN完成签到 ,获得积分10
7秒前
KHromance完成签到,获得积分10
9秒前
11秒前
szyzzz完成签到,获得积分10
11秒前
xie完成签到 ,获得积分10
11秒前
研友_8KAOBn发布了新的文献求助10
11秒前
13秒前
ZYYYY发布了新的文献求助10
13秒前
G浅浅完成签到,获得积分10
13秒前
共享精神应助Valtpus采纳,获得10
14秒前
16秒前
研友_LN25rL发布了新的文献求助10
16秒前
三三完成签到,获得积分10
17秒前
健康豆芽菜完成签到 ,获得积分10
17秒前
laoxiaozi发布了新的文献求助10
18秒前
hkh发布了新的文献求助10
19秒前
20秒前
慕青应助张瀚文采纳,获得10
20秒前
21秒前
北雁发布了新的文献求助10
21秒前
21秒前
随便完成签到,获得积分10
21秒前
23秒前
SciGPT应助科研通管家采纳,获得10
24秒前
zic123应助科研通管家采纳,获得20
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
24秒前
研友_Z14Yln应助科研通管家采纳,获得10
24秒前
yin应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
25秒前
25秒前
orixero应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得10
25秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464003
求助须知:如何正确求助?哪些是违规求助? 3057207
关于积分的说明 9056164
捐赠科研通 2747262
什么是DOI,文献DOI怎么找? 1507293
科研通“疑难数据库(出版商)”最低求助积分说明 696479
邀请新用户注册赠送积分活动 696004