Artificial intelligence with mass spectrometry-based multimodal molecular profiling methods for advancing therapeutic discovery of infectious diseases

仿形(计算机编程) 计算生物学 质谱法 生物 化学 计算机科学 色谱法 操作系统
作者
Jingjing Liu,Chaohui Bao,Jiaxin Zhang,Ze‐Guang Han,Hai Fang,Haitao Lu
出处
期刊:Pharmacology & Therapeutics [Elsevier]
卷期号:: 108712-108712
标识
DOI:10.1016/j.pharmthera.2024.108712
摘要

Infectious diseases, driven by a diverse array of pathogens, can swiftly undermine public health systems. Accurate diagnosis and treatment of infectious diseases-centered around the identification of biomarkers and the elucidation of disease mechanisms-are in dire need of more versatile and practical analytical approaches. Mass spectrometry (MS)-based molecular profiling methods can deliver a wealth of information on a range of functional molecules, including nucleic acids, proteins, and metabolites. While MS-driven omics analyses can yield vast datasets, the sheer complexity and multi-dimensionality of MS data can significantly hinder the identification and characterization of functional molecules within specific biological processes and events. Artificial intelligence (AI) emerges as a potent complementary tool that can substantially enhance the processing and interpretation of MS data. AI applications in this context lead to the reduction of spurious signals, the improvement of precision, the creation of standardized analytical frameworks, and the increase of data integration efficiency. This critical review emphasizes the pivotal roles of MS based omics strategies in the discovery of biomarkers and the clarification of infectious diseases. Additionally, the review underscores the transformative ability of AI techniques to enhance the utility of MS-based molecular profiling in the field of infectious diseases by refining the quality and practicality of data produced from omics analyses. In conclusion, we advocate for a forward-looking strategy that integrates AI with MS-based molecular profiling. This integration aims to transform the analytical landscape and the performance of biological molecule characterization, potentially down to the single-cell level. Such advancements are anticipated to propel the development of AI-driven predictive models, thus improving the monitoring of diagnostics and therapeutic discovery for the ongoing challenge related to infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charail发布了新的文献求助10
2秒前
vane发布了新的文献求助10
2秒前
3秒前
隐形曼青应助懦弱的难敌采纳,获得10
3秒前
3秒前
3秒前
京苏完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
暮霭沉沉应助fifteen采纳,获得10
3秒前
Z1987完成签到,获得积分10
4秒前
ican完成签到,获得积分10
5秒前
6秒前
6秒前
大水发布了新的文献求助10
6秒前
6秒前
6秒前
星辰大海应助和成采纳,获得10
6秒前
雪山飞龙发布了新的文献求助10
7秒前
77完成签到,获得积分10
8秒前
Cris发布了新的文献求助10
10秒前
张子扬发布了新的文献求助10
10秒前
10秒前
mach完成签到,获得积分10
10秒前
星魂发布了新的文献求助10
11秒前
小奎完成签到,获得积分10
11秒前
搜集达人应助111采纳,获得10
12秒前
英俊的铭应助Fancy采纳,获得10
12秒前
超帅方盒发布了新的文献求助30
13秒前
13秒前
123完成签到,获得积分10
13秒前
15秒前
16秒前
17秒前
完美世界应助Ayanami采纳,获得10
18秒前
JIAYUEMA发布了新的文献求助10
18秒前
和成完成签到,获得积分10
19秒前
19秒前
朴素的焦发布了新的文献求助10
19秒前
20秒前
寒冷慕青完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943