Clinical Validation of a Deep Learning Algorithm for Automated Coronary Artery Disease Detection and Classification Using a Heterogeneous Multivendor Coronary Computed Tomography Angiography Data Set

医学 冠状动脉疾病 计算机辅助设计 算法 金标准(测试) 放射科 血管造影 计算机断层血管造影 冠状动脉造影 数据集 人工智能 内科学 计算机科学 心肌梗塞 工程类 工程制图
作者
Emanuele Muscogiuri,Marly van Assen,Giovanni Tessarin,Alexander C. Razavi,Max Schöebinger,Michael Wels,Mehmet Gulsun,Puneet Sharma,George S. K. Fung,Carlo N. De Cecco
出处
期刊:Journal of Thoracic Imaging [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rti.0000000000000798
摘要

Purpose: We sought to clinically validate a fully automated deep learning (DL) algorithm for coronary artery disease (CAD) detection and classification in a heterogeneous multivendor cardiac computed tomography angiography data set. Materials and Methods In this single-centre retrospective study, we included patients who underwent cardiac computed tomography angiography scans between 2010 and 2020 with scanners from 4 vendors (Siemens Healthineers, Philips, General Electrics, and Canon). Coronary Artery Disease–Reporting and Data System (CAD-RADS) classification was performed by a DL algorithm and by an expert reader (reader 1, R1), the gold standard. Variability analysis was performed with a second reader (reader 2, R2) and the radiologic reports on a subset of cases. Statistical analysis was performed stratifying patients according to the presence of CAD (CAD-RADS >0) and obstructive CAD (CAD-RADS ≥3). Results Two hundred ninety-six patients (average age: 53.66 ± 13.65, 169 males) were enrolled. For the detection of CAD only, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 95.3%, 79.7%, 87.5%, and 87.5%, respectively. For the detection of obstructive CAD, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 89.4%, 92.8%, 92.2%, and 91.1%, respectively. The variability analysis for the detection of obstructive CAD showed an accuracy of 92.5% comparing the DL algorithm with R1, and 96.2% comparing R1 with R2 and radiology reports. The time of analysis was lower using the DL algorithm compared with R1 ( P < 0.001). Conclusions The DL algorithm demonstrated robust performance and excellent agreement with the expert readers' analysis for the evaluation of CAD, which also corresponded with significantly reduced image analysis time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Giao完成签到,获得积分10
刚刚
刚刚
文瑶琪完成签到,获得积分10
1秒前
Quhang发布了新的文献求助10
1秒前
top发布了新的文献求助10
2秒前
2秒前
2秒前
Sebastian完成签到,获得积分10
2秒前
浩二完成签到,获得积分10
2秒前
77发布了新的文献求助10
3秒前
3秒前
3秒前
清脆的傲旋完成签到,获得积分10
3秒前
小送完成签到,获得积分10
4秒前
hejilianglove发布了新的文献求助10
4秒前
温暖静柏完成签到,获得积分20
4秒前
4秒前
蔡徐坤完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
李爱国应助金锐采纳,获得10
6秒前
领导范儿应助繁荣的觅儿采纳,获得10
6秒前
自然的峰单关注了科研通微信公众号
6秒前
浮游应助飘逸的太阳采纳,获得10
6秒前
7秒前
枕安完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
ziyanga发布了新的文献求助10
7秒前
刘大能完成签到,获得积分10
8秒前
zy完成签到,获得积分10
8秒前
乐乐应助牧野牧采纳,获得10
8秒前
8秒前
Stella应助好运莲莲莲采纳,获得10
9秒前
丘比特应助Ccccc采纳,获得10
9秒前
斯文飞雪发布了新的文献求助10
9秒前
科目三应助陶醉眼睛采纳,获得10
9秒前
缓慢的高山应助方宇典采纳,获得10
9秒前
文6发布了新的文献求助10
10秒前
genomed完成签到,获得积分0
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671