亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical Validation of a Deep Learning Algorithm for Automated Coronary Artery Disease Detection and Classification Using a Heterogeneous Multivendor Coronary Computed Tomography Angiography Data Set

医学 冠状动脉疾病 计算机辅助设计 算法 金标准(测试) 放射科 血管造影 计算机断层血管造影 冠状动脉造影 数据集 人工智能 内科学 计算机科学 心肌梗塞 工程制图 工程类
作者
Emanuele Muscogiuri,Marly van Assen,Giovanni Tessarin,Alexander C. Razavi,Max Schöebinger,Michael Wels,Mehmet Gulsun,Puneet Sharma,George S. K. Fung,Carlo N. De Cecco
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rti.0000000000000798
摘要

Purpose: We sought to clinically validate a fully automated deep learning (DL) algorithm for coronary artery disease (CAD) detection and classification in a heterogeneous multivendor cardiac computed tomography angiography data set. Materials and Methods In this single-centre retrospective study, we included patients who underwent cardiac computed tomography angiography scans between 2010 and 2020 with scanners from 4 vendors (Siemens Healthineers, Philips, General Electrics, and Canon). Coronary Artery Disease–Reporting and Data System (CAD-RADS) classification was performed by a DL algorithm and by an expert reader (reader 1, R1), the gold standard. Variability analysis was performed with a second reader (reader 2, R2) and the radiologic reports on a subset of cases. Statistical analysis was performed stratifying patients according to the presence of CAD (CAD-RADS >0) and obstructive CAD (CAD-RADS ≥3). Results Two hundred ninety-six patients (average age: 53.66 ± 13.65, 169 males) were enrolled. For the detection of CAD only, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 95.3%, 79.7%, 87.5%, and 87.5%, respectively. For the detection of obstructive CAD, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 89.4%, 92.8%, 92.2%, and 91.1%, respectively. The variability analysis for the detection of obstructive CAD showed an accuracy of 92.5% comparing the DL algorithm with R1, and 96.2% comparing R1 with R2 and radiology reports. The time of analysis was lower using the DL algorithm compared with R1 ( P < 0.001). Conclusions The DL algorithm demonstrated robust performance and excellent agreement with the expert readers' analysis for the evaluation of CAD, which also corresponded with significantly reduced image analysis time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
hkxfg发布了新的文献求助10
14秒前
16秒前
19秒前
20秒前
Maple发布了新的文献求助10
21秒前
roy完成签到,获得积分10
32秒前
bkagyin应助hkxfg采纳,获得10
35秒前
45秒前
02发布了新的文献求助10
52秒前
运运完成签到 ,获得积分10
55秒前
Maple发布了新的文献求助10
1分钟前
wzzznh完成签到 ,获得积分10
1分钟前
Maple完成签到,获得积分10
1分钟前
端庄亦巧完成签到 ,获得积分10
1分钟前
科研通AI5应助jacs111采纳,获得10
1分钟前
CodeCraft应助罗舒采纳,获得10
1分钟前
1分钟前
1分钟前
jacs111发布了新的文献求助10
1分钟前
Zjc0913完成签到 ,获得积分10
1分钟前
libob完成签到,获得积分10
1分钟前
Aaaaa发布了新的文献求助10
1分钟前
jacs111完成签到,获得积分10
1分钟前
xmqaq完成签到,获得积分10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Aaaaa完成签到,获得积分20
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
2分钟前
流萤发布了新的文献求助30
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
鱼羊明完成签到 ,获得积分10
2分钟前
tufei完成签到,获得积分10
2分钟前
暮冬完成签到 ,获得积分10
2分钟前
流萤完成签到,获得积分10
2分钟前
瑞瑞刘完成签到 ,获得积分10
2分钟前
土豪的摩托完成签到 ,获得积分10
2分钟前
z610938841完成签到,获得积分10
2分钟前
雨yu完成签到 ,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214