Predicting Acute Exacerbation Phenotype in Chronic Obstructive Pulmonary Disease Patients using VGG-16 Deep Learning

医学 恶化 肺病 表型 内科学 慢性阻塞性肺病 重症监护医学 基因 生物化学 化学
作者
Shengchuan Feng,Ran Zhang,Wenxiu Zhang,Yuqiong Yang,Aiqi Song,Jiawei Chen,Fengyan Wang,Jiaxuan Xu,Cuixia Liang,Xiaoyun Liang,Rongchang Chen,Zhenyu Liang
出处
期刊:Respiration [S. Karger AG]
卷期号:: 1-14
标识
DOI:10.1159/000540383
摘要

Introduction: Exacerbations of chronic obstructive pulmonary disease (COPD) have a significant impact on hospitalizations, morbidity, and mortality of patients. This study aimed to develop a model for predicting acute exacerbation in COPD patients (AECOPD) based on deep-learning (DL) features. Methods: We performed a retrospective study on 219 patients with COPD who underwent inspiratory and expiratory HRCT scans. By recording the acute respiratory events of the previous year, these patients were further divided into non-AECOPD group and AECOPD group according to the presence of acute exacerbation events. Sixty-nine quantitative CT (QCT) parameters of emphysema and airway were calculated by NeuLungCARE software, and 2,000 DL features were extracted by VGG-16 method. The logistic regression method was employed to identify AECOPD patients, and 29 patients of external validation cohort were used to access the robustness of the results. Results: The model 3-B achieved an area under the receiver operating characteristic curve (AUC) of 0.933 and 0.865 in the testing cohort and external validation cohort, respectively. Model 3-I obtained AUC of 0.895 in the testing cohort and AUC of 0.774 in the external validation cohort. Model 7-B combined clinical characteristics, QCT parameters, and DL features achieved the best performance with an AUC of 0.979 in the testing cohort and demonstrating robust predictability with an AUC of 0.932 in the external validation cohort. Likewise, model 7-I achieved an AUC of 0.938 and 0.872 in the testing cohort and external validation cohort, respectively. Conclusions: DL features extracted from HRCT scans can effectively predict acute exacerbation phenotype in COPD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崩溃发布了新的文献求助10
1秒前
无花果应助hs采纳,获得10
1秒前
打打应助千灯采纳,获得10
1秒前
2秒前
3秒前
jnngshan应助李秋静采纳,获得10
3秒前
Orange应助科研狗采纳,获得10
4秒前
桐月十六完成签到 ,获得积分10
4秒前
美好乐松应助hopewin2024采纳,获得10
4秒前
4秒前
4秒前
whatever应助猫咪喵喵采纳,获得30
4秒前
5秒前
领导范儿应助WYF采纳,获得10
5秒前
5秒前
北林完成签到,获得积分10
6秒前
scige发布了新的文献求助10
6秒前
超帅青旋完成签到,获得积分20
6秒前
m李完成签到 ,获得积分10
6秒前
彦子完成签到 ,获得积分10
6秒前
包子发布了新的文献求助10
6秒前
6秒前
充电宝应助m3采纳,获得10
8秒前
8秒前
9秒前
超帅青旋发布了新的文献求助10
9秒前
付绒完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
天涯是我发布了新的文献求助30
11秒前
syy关注了科研通微信公众号
12秒前
lll6xz发布了新的文献求助10
13秒前
leozhang完成签到,获得积分10
13秒前
13秒前
Owen应助崩溃采纳,获得10
13秒前
烟花应助Y哦莫哦莫采纳,获得10
13秒前
14秒前
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Advanced Issues in Partial Least Squares Structural Equation Modeling (Second Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143890
求助须知:如何正确求助?哪些是违规求助? 2795451
关于积分的说明 7815296
捐赠科研通 2451527
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419