Predicting Acute Exacerbation Phenotype in Chronic Obstructive Pulmonary Disease Patients using VGG-16 Deep Learning

医学 恶化 肺病 表型 内科学 慢性阻塞性肺病 重症监护医学 基因 生物化学 化学
作者
Shengchuan Feng,Ran Zhang,Wenxiu Zhang,Yuqiong Yang,Aiqi Song,Jiawei Chen,Fengyan Wang,Jiaxuan Xu,Cuixia Liang,Xiaoyun Liang,Rongchang Chen,Zhenyu Liang
出处
期刊:Respiration [Karger Publishers]
卷期号:: 1-14
标识
DOI:10.1159/000540383
摘要

Introduction: Exacerbations of chronic obstructive pulmonary disease (COPD) have a significant impact on hospitalizations, morbidity, and mortality of patients. This study aimed to develop a model for predicting acute exacerbation in COPD patients (AECOPD) based on deep-learning (DL) features. Methods: We performed a retrospective study on 219 patients with COPD who underwent inspiratory and expiratory HRCT scans. By recording the acute respiratory events of the previous year, these patients were further divided into non-AECOPD group and AECOPD group according to the presence of acute exacerbation events. Sixty-nine quantitative CT (QCT) parameters of emphysema and airway were calculated by NeuLungCARE software, and 2,000 DL features were extracted by VGG-16 method. The logistic regression method was employed to identify AECOPD patients, and 29 patients of external validation cohort were used to access the robustness of the results. Results: The model 3-B achieved an area under the receiver operating characteristic curve (AUC) of 0.933 and 0.865 in the testing cohort and external validation cohort, respectively. Model 3-I obtained AUC of 0.895 in the testing cohort and AUC of 0.774 in the external validation cohort. Model 7-B combined clinical characteristics, QCT parameters, and DL features achieved the best performance with an AUC of 0.979 in the testing cohort and demonstrating robust predictability with an AUC of 0.932 in the external validation cohort. Likewise, model 7-I achieved an AUC of 0.938 and 0.872 in the testing cohort and external validation cohort, respectively. Conclusions: DL features extracted from HRCT scans can effectively predict acute exacerbation phenotype in COPD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风趣从露完成签到,获得积分10
1秒前
张暖暖发布了新的文献求助10
1秒前
无花果应助叶沉修灵采纳,获得10
1秒前
2秒前
3秒前
飘逸的钻石完成签到 ,获得积分10
4秒前
传奇3应助恐怖稽器人采纳,获得10
4秒前
4秒前
4秒前
5秒前
星辰大海应助风中无血采纳,获得10
6秒前
公冶愚志完成签到 ,获得积分10
7秒前
111发布了新的文献求助10
7秒前
7秒前
杰小程完成签到 ,获得积分10
7秒前
Peng发布了新的文献求助20
7秒前
Xiaoxiao应助独特冰安采纳,获得10
8秒前
小远完成签到,获得积分10
9秒前
ZZ发布了新的文献求助10
9秒前
gilderf发布了新的文献求助10
9秒前
SCI完成签到,获得积分10
11秒前
wjay完成签到,获得积分10
12秒前
小王完成签到,获得积分10
13秒前
13秒前
在水一方应助恐怖稽器人采纳,获得10
13秒前
13秒前
ding应助SASI采纳,获得10
14秒前
完美世界应助勤劳的雨文采纳,获得10
14秒前
14秒前
木头人发布了新的文献求助10
15秒前
ding应助甜甜采纳,获得10
16秒前
风中无血发布了新的文献求助10
18秒前
KKKZ完成签到,获得积分10
19秒前
19秒前
1203发布了新的文献求助10
19秒前
沉静的夜玉完成签到,获得积分10
21秒前
77发布了新的文献求助10
21秒前
科研通AI5应助银点采纳,获得150
21秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232