介电谱
X射线光电子能谱
高分辨率透射电子显微镜
拉曼光谱
阴极
煅烧
循环伏安法
化学
电化学
分析化学(期刊)
材料科学
化学工程
电极
纳米技术
物理
物理化学
透射电子显微镜
光学
生物化学
色谱法
工程类
催化作用
作者
Nikhil Chandran Mukkattu Kuniyil,Ranjan Robin,Subramaniam Gokulnath,Nadar Allwyn,M. Sathish
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2024-08-12
卷期号:38 (17): 17026-17037
标识
DOI:10.1021/acs.energyfuels.4c02772
摘要
The NASICON-structured Na4VMn(PO4)3 (NVMP) cathode material, known for its three-dimensional framework and high theoretical capacity, faces limitations due to its poor electronic conductivity. To enhance its practicality for sodium-ion battery (SIB) applications, we employed strategies such as coating with a thin conducting carbon layer and doping Zn2+ ions into the Mn2+ sites of NVMP. These modifications aimed to improve the intrinsic properties and reduce Jahn–Teller distortion effects. Zn or Zn-based oxides, typically anode materials for SIBs, serve as structural support when doped into cathodes. We synthesized Na4VMn1–xZnx(PO4)3/C (Zn(x)-NVMP/C, where x = 0.00, 0.05, 0.10, 0.15, 0.20) via a citric acid-assisted sol–gel method, followed by calcination at 750 °C under an Ar atmosphere. Characterizations using XRD, XPS, HRTEM, and Raman spectroscopy confirmed the high purity of these materials. Among them, Zn(0.15)-NVMP/C exhibited the best performance, with lower internal resistance and enhanced diffusion kinetics, achieving a stable capacity of 72 mAh g–1 at 10C with 83% retention after 3000 cycles, and high rate tolerance up to 50C. Operando XRD studies revealed highly reversible two-phase charge storage mechanisms, and ex situ XPS analysis confirmed the charge storage mechanism of the cathode, while electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) analyses confirmed reduced polarization of the NVMP cathode after Zn doping. These findings indicate that Zn(0.15)-NVMP/C is a promising cathode material for SIB applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI