Deciphering the role of lipid metabolism and acetylation in osteosarcoma: A comprehensive molecular analysis

骨肉瘤 乙酰化 脂质代谢 基因 生物 癌症研究 生物化学
作者
Yong Hai Wen,Xijiang Zhang,Jin Zhang,Zhisheng Lu
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (10): 4776-4790
标识
DOI:10.1002/tox.24325
摘要

Abstract Osteosarcoma, known for its rapid progression and high metastatic potential, poses significant challenges in adolescent oncology. This study delves into the roles of lipid metabolism and acetylation genes in the disease's pathogenesis. Utilizing gene set variation analysis, we examined 14 lipid metabolism‐related pathways in osteosarcoma patients, identifying significant variances in three pathways between metastatic and primary cases. Additionally, differences in four acetylation genes between these groups were observed. A comprehensive analysis pinpointed 62 lipid metabolism‐related genes, with 39 exhibiting significant correlations with acetylation genes, termed lipid metabolism acetylation (LMA) genes. Employing machine learning techniques like Lasso+RSF and GBM, we developed a predictive model for overall survival based on LMA genes. This model, with an average c‐index of 0.771, focuses on three key genes: CYP2C8, PAFAH2, and ACOX3, whose prognostic value was confirmed through survival and receiver operating characteristic curve analyses. Quantitative RT‐PCR results indicated higher expression levels of ACOX3 and PAFAH2 in OS cells (143B, HOS, MG63) than in osteoblasts (hFOB1.19), while CYP2C8 was lower in OS cells. Furthermore, drug sensitivity analysis through the pRRophetic algorithm suggested potential targeted therapies, revealing drugs with differential sensitivity based on LMA scores and varied treatment responses related to the expression of core genes. This study not only highlights the crucial role of lipid metabolism and acetylation in osteosarcoma but also offers a foundation for personalized treatment strategies, marking a notable advancement in combating this severe form of adolescent cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助会撒娇的若剑采纳,获得10
刚刚
Sucht完成签到,获得积分10
3秒前
3秒前
小龚完成签到,获得积分10
4秒前
5秒前
科目三应助安静海露采纳,获得10
5秒前
在水一方应助安静海露采纳,获得10
5秒前
科研通AI2S应助安静海露采纳,获得10
5秒前
脑洞疼应助安静海露采纳,获得10
5秒前
小蘑菇应助安静海露采纳,获得10
5秒前
李爱国应助安静海露采纳,获得10
5秒前
天天快乐应助安静海露采纳,获得10
5秒前
FashionBoy应助安静海露采纳,获得10
5秒前
丘比特应助安静海露采纳,获得10
5秒前
SciGPT应助安静海露采纳,获得10
5秒前
文艺的如柏完成签到,获得积分10
6秒前
6秒前
xiaoyu11112发布了新的文献求助10
6秒前
9秒前
Aegean完成签到,获得积分20
10秒前
diu完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
头孢克肟发布了新的文献求助10
13秒前
14秒前
17秒前
qq1083716237完成签到,获得积分10
18秒前
19秒前
momo应助自然的宝贝采纳,获得10
20秒前
22秒前
李海平发布了新的文献求助10
25秒前
27秒前
27秒前
桐桐应助明若清采纳,获得10
28秒前
天天快乐应助native采纳,获得10
29秒前
timikk完成签到,获得积分20
29秒前
肖肖完成签到,获得积分10
29秒前
姚断天完成签到,获得积分10
29秒前
归尘发布了新的文献求助30
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3414422
求助须知:如何正确求助?哪些是违规求助? 3016520
关于积分的说明 8876981
捐赠科研通 2704321
什么是DOI,文献DOI怎么找? 1482659
科研通“疑难数据库(出版商)”最低求助积分说明 685516
邀请新用户注册赠送积分活动 680291