Machine learning descriptors for crystal materials: applications in Ni-rich layered cathode and lithium anode materials for high-energy-density lithium batteries

阳极 锂(药物) 材料科学 阴极 能量密度 磷酸钒锂电池 Crystal(编程语言) 光电子学 化学工程 纳米技术 工程物理 计算机科学 化学 电极 物理化学 物理 工程类 内分泌学 程序设计语言 医学
作者
Ruiqi Zhang,F. C. Rong,Genming Lai,Guangfeng Wu,Yaokun Ye,Jiaxin Zheng
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
卷期号:4 (4) 被引量:4
标识
DOI:10.20517/jmi.2024.22
摘要

Lithium batteries have revolutionized energy storage with their high energy density and long lifespan, but challenges such as energy density limitations, safety, and cost still need to be addressed. Crystalline materials, including Ni-rich cathodes and lithium anodes, play pivotal roles in the performance of high-energy-density lithium batteries. Understanding the micro-scale behavior and degradation mechanisms of these materials is crucial for improving macro-scale battery performance. Simulation methods, particularly machine learning (ML) techniques, have become indispensable tools in elucidating these intricate processes because of great efficiency and acceptable accuracy. ML methods depend on descriptors, which bridge the gap between crystal structures and input matrices of models. These descriptors encode essential atomic-level details in crystal structures, enabling predictions of material properties and behaviors relevant to lithium batteries. This paper reviews and discusses the diverse array of descriptors employed in the simulation of crystalline materials for lithium batteries with high energy density. Case studies highlight the effectiveness of different descriptors in simulating cathode behaviors such as Li/Ni disordering, screening of stable LiNi0.8Co0.1Mn0.1O2 (NMC811) configurations, and lithium deposition behaviors at the anode interface. The discussed descriptors can also be applied to other crystalline cathode, anode, and electrolyte materials in lithium batteries and advance the development of lithium batteries with superior energy density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助瑞雪不是雪采纳,获得10
1秒前
XuChaogang完成签到 ,获得积分10
1秒前
孤独的根号三完成签到 ,获得积分10
2秒前
2秒前
无聊的小懒虫完成签到 ,获得积分10
3秒前
布鲁爱思完成签到,获得积分10
8秒前
9秒前
14秒前
15秒前
思源应助lemon 1118采纳,获得30
15秒前
15秒前
wanci应助竺七采纳,获得10
18秒前
小蘑菇应助超级亿先采纳,获得10
19秒前
xm发布了新的文献求助10
19秒前
NexusExplorer应助yy采纳,获得10
20秒前
Syh关注了科研通微信公众号
20秒前
21秒前
zy发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
25秒前
25秒前
26秒前
Chloe发布了新的文献求助30
27秒前
shgd完成签到,获得积分10
27秒前
李j1发布了新的文献求助20
27秒前
lemon 1118发布了新的文献求助30
29秒前
端庄芾发布了新的文献求助10
29秒前
30秒前
31秒前
唯爱林发布了新的文献求助10
31秒前
zhonglv7应助Chloe采纳,获得10
31秒前
31秒前
重重发布了新的文献求助30
32秒前
永远有多远完成签到,获得积分10
32秒前
赘婿应助yes采纳,获得10
33秒前
33秒前
小二发布了新的文献求助10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113