Machine learning descriptors for crystal materials: applications in Ni-rich layered cathode and lithium anode materials for high-energy-density lithium batteries

阳极 锂(药物) 材料科学 阴极 能量密度 磷酸钒锂电池 Crystal(编程语言) 光电子学 化学工程 纳米技术 工程物理 计算机科学 化学 电极 物理化学 物理 工程类 医学 程序设计语言 内分泌学
作者
Ruiqi Zhang,F. C. Rong,Genming Lai,Guangfeng Wu,Yaokun Ye,Jiaxin Zheng
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
卷期号:4 (4) 被引量:3
标识
DOI:10.20517/jmi.2024.22
摘要

Lithium batteries have revolutionized energy storage with their high energy density and long lifespan, but challenges such as energy density limitations, safety, and cost still need to be addressed. Crystalline materials, including Ni-rich cathodes and lithium anodes, play pivotal roles in the performance of high-energy-density lithium batteries. Understanding the micro-scale behavior and degradation mechanisms of these materials is crucial for improving macro-scale battery performance. Simulation methods, particularly machine learning (ML) techniques, have become indispensable tools in elucidating these intricate processes because of great efficiency and acceptable accuracy. ML methods depend on descriptors, which bridge the gap between crystal structures and input matrices of models. These descriptors encode essential atomic-level details in crystal structures, enabling predictions of material properties and behaviors relevant to lithium batteries. This paper reviews and discusses the diverse array of descriptors employed in the simulation of crystalline materials for lithium batteries with high energy density. Case studies highlight the effectiveness of different descriptors in simulating cathode behaviors such as Li/Ni disordering, screening of stable LiNi0.8Co0.1Mn0.1O2 (NMC811) configurations, and lithium deposition behaviors at the anode interface. The discussed descriptors can also be applied to other crystalline cathode, anode, and electrolyte materials in lithium batteries and advance the development of lithium batteries with superior energy density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQQ发布了新的文献求助10
1秒前
3秒前
深情安青应助白沐风采纳,获得10
4秒前
5秒前
7秒前
小飞猪发布了新的文献求助10
8秒前
liuqizong123完成签到,获得积分10
8秒前
SSNN完成签到,获得积分10
9秒前
9秒前
11秒前
慧慧完成签到,获得积分10
11秒前
赘婿应助sanhjc采纳,获得10
12秒前
调皮的数据线完成签到 ,获得积分10
13秒前
无花果应助大松鼠采纳,获得20
15秒前
15秒前
任性雨筠发布了新的文献求助10
17秒前
19秒前
饼饼完成签到,获得积分10
19秒前
今后应助gh采纳,获得30
20秒前
可爱的函函应助2224536采纳,获得10
21秒前
Koi发布了新的文献求助10
22秒前
22秒前
26秒前
csa1007发布了新的文献求助10
26秒前
Active发布了新的文献求助10
28秒前
杠赛来完成签到,获得积分10
29秒前
尊敬的金针菇完成签到,获得积分0
29秒前
lwh104完成签到,获得积分10
30秒前
欧阳正义发布了新的文献求助10
30秒前
mark发布了新的文献求助10
30秒前
30秒前
arabidopsis应助zxhhm采纳,获得10
31秒前
调皮的数据线关注了科研通微信公众号
31秒前
iNk应助科研通管家采纳,获得10
31秒前
iNk应助科研通管家采纳,获得10
31秒前
iNk应助科研通管家采纳,获得10
32秒前
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
小马甲应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498