Table-to-Text Generation With Pretrained Diffusion Models

计算机科学 扩散 解算器 表(数据库) 任务(项目管理) 贝叶斯概率 数据挖掘 人工智能 机器学习 程序设计语言 热力学 物理 经济 管理
作者
Aleksei S. Krylov,Oleg Somov
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 110517-110525
标识
DOI:10.1109/access.2024.3440006
摘要

Diffusion models have demonstrated significant potential in achieving state-of-the-art performance across various text generation tasks. In this systematic study, we investigate their application to the table-to-text problem by adapting the diffusion model to the task and conducting an in-depth analysis. Our experiments cover multiple aspects of diffusion models training. We explore sampling strategy influence by inducing recent diffusion model accelerator DPM-Solver++ into our core model. We have tested different prediction aggregation methods, like ROVER and Minimum Bayes-Risk (MBR). Our studies cover the impact of the pre-training phase in diffusion models and the generation length constraints influence. We also have compared diffusion model generation with auto-regressive text-to-text models with different temperature settings for diversity evaluation. Our key observation is that diffusion models demonstrate the balance between quality and diversity while auto-regressive text-to-text models are not successful at handling both at the same time. Furthermore, we found out that to achieve the highest quality possible, it is preferable to use a regular sampler with the strictest length constraint to create multiple samples, and then use MBR to aggregate the predictions. However, if you are prepared to give up high level of diversity and to accelerate the process, you can also utilize a fast sampler DPM-Solver++. Our findings reveal that diffusion models achieve comparable results in the table-to-text domain, highlighting their viability in the table-to-text challenge as a promising research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助wenwen采纳,获得10
2秒前
叶95完成签到 ,获得积分10
3秒前
3秒前
qinghe完成签到,获得积分10
3秒前
姣姣发布了新的文献求助10
4秒前
HHH完成签到,获得积分10
6秒前
XHS完成签到,获得积分10
7秒前
7秒前
7秒前
Orange应助泥怎么睡得着的采纳,获得10
10秒前
one发布了新的文献求助10
12秒前
13秒前
科研通AI5应助油糕饵块采纳,获得10
15秒前
ding应助无私语儿采纳,获得10
15秒前
垣味栗子酱完成签到,获得积分10
16秒前
orixero应助勤恳的嚓茶采纳,获得10
16秒前
16秒前
澜斐完成签到,获得积分10
16秒前
18秒前
喜悦的皮卡丘完成签到,获得积分10
18秒前
赘婿应助王怀樟采纳,获得10
20秒前
清脆不斜应助啦啦啦采纳,获得30
20秒前
yanshapo发布了新的文献求助10
21秒前
泥怎么睡得着的完成签到,获得积分20
21秒前
22秒前
23秒前
23秒前
科研通AI5应助大力便当采纳,获得10
24秒前
25秒前
25秒前
26秒前
yanshapo完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
科研通AI5应助东郭凝蝶采纳,获得10
27秒前
29秒前
搜集达人应助姜豆姜采纳,获得30
30秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752547
求助须知:如何正确求助?哪些是违规求助? 3296091
关于积分的说明 10092821
捐赠科研通 3010979
什么是DOI,文献DOI怎么找? 1653508
邀请新用户注册赠送积分活动 788267
科研通“疑难数据库(出版商)”最低求助积分说明 752789