DDSBC: A Stacking Ensemble Classifier-Based Approach for Breast Cancer Drug-Pair Cell Synergy Prediction

机器学习 药品 分类器(UML) 人工智能 计算机科学 乳腺癌 集成学习 药物靶点 抗癌药物 堆积 抗癌药 癌症 医学 药理学 内科学 物理 核磁共振
作者
Aamir Mehmood,Aman Chandra Kaushik,Dong‐Qing Wei
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6421-6431 被引量:1
标识
DOI:10.1021/acs.jcim.4c01101
摘要

Breast cancer (BC) ranks as a leading cause of mortality among women worldwide, with incidence rates continuing to rise. The quest for effective treatments has led to the adoption of drug combination therapy, aiming to enhance drug efficacy. However, identifying synergistic drug combinations remains a daunting challenge due to the myriad of potential drug pairs. Current research leverages machine learning (ML) and deep learning (DL) models for drug-pair synergy prediction and classification. Nevertheless, these models often underperform on specific cancer types, including BC, as they are trained on data spanning various cancers without any specialization. Here, we introduce a stacking ensemble classifier, the drug–drug synergy for breast cancer (DDSBC), tailored explicitly for BC drug-pair cell synergy classification. Unlike existing models that generalize across cancer types, DDSBC is exclusively developed for BC, offering a more focused approach. Our comparative analysis against classical ML methods as well as DL models developed for drug synergy prediction highlights DDSBC's superior performance across test and independent datasets on BC data. Despite certain metrics where other methods narrowly surpass DDSBC by 1–2%, DDSBC consistently emerges as the top-ranked model, showcasing significant differences in scoring metrics and robust performance in ablation studies. DDSBC's performance and practicality position it as a preferred choice or an adjunctive validation tool for identifying synergistic or antagonistic drug pairs in BC, providing valuable insights for treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yelaikuhun74发布了新的文献求助10
刚刚
GDY完成签到,获得积分10
刚刚
1秒前
何休槊发布了新的文献求助20
1秒前
1秒前
Cactus应助cat_head采纳,获得10
1秒前
HonamC完成签到,获得积分10
2秒前
Windycityguy完成签到,获得积分10
2秒前
科研通AI5应助bluesiryao采纳,获得10
2秒前
我爱紫丁香完成签到,获得积分10
3秒前
JJ完成签到,获得积分10
3秒前
Hoooo...发布了新的文献求助10
4秒前
asd发布了新的文献求助10
4秒前
4秒前
有足量NaCl发布了新的文献求助10
4秒前
研友_VZG7GZ应助eternity136采纳,获得10
5秒前
5秒前
pomelost发布了新的文献求助10
5秒前
煎饼果子完成签到,获得积分10
6秒前
mj完成签到,获得积分10
6秒前
7秒前
MHX完成签到,获得积分10
8秒前
9秒前
Doubleyang1完成签到,获得积分20
10秒前
i2z关注了科研通微信公众号
10秒前
10秒前
研友_VZG7GZ应助碧蓝的觅露采纳,获得10
10秒前
ding应助明理的凌旋采纳,获得10
11秒前
12秒前
Ainhoa完成签到,获得积分10
12秒前
独孤幻月96应助甜甜亦丝采纳,获得10
12秒前
哆啦A涵发布了新的文献求助10
13秒前
14秒前
15秒前
老实用户完成签到 ,获得积分10
16秒前
Sakura完成签到 ,获得积分10
16秒前
hui发布了新的文献求助10
16秒前
满意的迎南完成签到 ,获得积分10
17秒前
苗条小霸王完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403