光动力疗法
材料科学
组分(热力学)
免疫疗法
光敏剂
诱导剂
癌症研究
纳米技术
医学
光化学
免疫学
化学
免疫系统
生物化学
热力学
有机化学
物理
基因
作者
Laiping Fang,Qi Meng,Jizhuang Wang,Yike Tu,Qu Hong,Yanzhao Diao,Wuming Li,Hua Wen,Fang Jin,Lifeng Hang,Ping’an Ma,Guihua Jiang
标识
DOI:10.1016/j.actbio.2024.07.034
摘要
Immunotherapy can enhance primary tumor efficacy, restrict distant growth, and combat lung metastasis. Unfortunately, it remains challenging to effectively activate the immune response. Here, tertiary butyl, methoxy, and triphenylamine (TPA) were utilized as electron donors to develop multifunctional photosensitizers (PSs). CNTPA-TPA, featuring TPA as the donor (D) and cyano as the acceptor (A), excelled in reactive oxygen species (ROS) generation due to its smaller singlet-triplet energy gap (ΔES-T) and larger spin-orbit coupling constant (SOC). Additionally, cyano groups reacted with glutamate (Glu) and glutathione (GSH), reducing intracellular GSH levels. This not only enhanced PDT efficacy but also triggered redox dyshomeostasis-mediated ferroptosis. The positive effects of photodynamic therapy (PDT) and ferroptosis promoted immunogenic cell death (ICD) and immune activation. By further combining anti-programmed cell death protein ligand-1 (anti-PD-L1) antibody, the powerful treatments of ferroptosis-assisted photodynamic immunotherapy significantly eradicated the primary tumors, inhibited the growth of distant tumors, and suppressed lung metastasis. In this study, a three-pronged approach was realized by single-component CNTPA-TPA, which simultaneously served as metal-free ferroptosis inducers, type-I photosensitizers, and immunologic adjuvants for near-infrared fluorescence imaging (NIR FLI)-guided multimodal phototheranostics of tumor. (1) CNTPA-TPA shared the smallest singlet-triplet energy gap and the largest spin-orbit coupling constant, which boosted intersystem crossing for efficient type-I photodynamic therapy (PDT); (2) Special reactions between cyano groups with glutamate and glutathione in mild conditions restricted the biosynthesis of intracellular GSH. GSH-depletion efficiently induced glutathione peroxidase 4 inactivation and lipid peroxide, resulting in ferroptosis of tumor cells; (3) The combination treatments of ferroptosis-assisted photodynamic immunotherapy induced by single-component CNTPA-TPA with the participation of anti-PD-L1 antibody resulted in increased T-cell infiltration and profound suppression of both primary and distant tumor growth, as well as lung metastasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI