Radiomics-based multimodality prediction of left atrial appendage thrombus using coronary computed tomography angiography

医学 无线电技术 血栓 放射科 计算机断层血管造影 计算机断层摄影术 附属物 多模态 冠状动脉造影 心脏病学 血管造影 内科学 心肌梗塞 语言学 解剖 哲学
作者
Ran Xin,Jian Yang,Y Chen
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.199
摘要

Abstract Background Timely detection of thrombus in the left atrial appendage (LAA) may help guide decision-making. However, existing models have challenges in extracting comprehensive image information. It has been shown that radiomics-based prediction models can be used for accurate identification. This study investigates potential radiomic markers and constructs a highly efficient multimodality prediction model for LAA thrombus in patients undergoing coronary computed tomography angiography (CCTA). Methods We retrospectively enrolled patients with nonvalvular atrial fibrillation (NVAF) who underwent CCTA and transesophageal echocardiography (TEE) from May 2015 to May 2020. These patients were classified into thrombus or non-thrombus groups based on TEE findings. The data were balanced by resampling and assigned to training or test sets. Radiomics was conducted on the extracted features, and a random forest algorithm was employed for feature selection and importance ranking. We constructed different multimodality thrombus prediction models and compared their performance using the area under the receiver operating characteristic curve (AUC) and other efficacy parameters. Results Among 670 patients (60.17±10.98 years, 70.1% male), 5.2% (n=35) had LAA thrombi. A total of 1232 radiomics features were extracted, with 25 features selected using a random forest for modeling. Two radiomics features (Ibp_3D_m1_firstorder Skewness and original_shape_Flatness) ranked the highest. The radiomics-based multimodality prediction model achieved an AUC of 0.964 (95% confidence interval [CI]: 0.947-0.982), an accuracy of 0.926 (95% CI: 0.925-0.926), and an F1 score of 0.924, outperforming other traditional prediction models. Decision curve analysis also indicated that this model provided the best net clinical benefit. Conclusions Radiomics facilitates a comprehensive exploration of predictors associated with LAA thrombi. A radiomics-based multimodality prediction model can significantly enhance the efficiency of non-invasively detecting thrombi.Receiver operating characteristic curveDecision curve analysis

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁绫发布了新的文献求助10
1秒前
李明发布了新的文献求助10
1秒前
叙余完成签到 ,获得积分10
1秒前
云澈完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
小二郎应助小粒橙采纳,获得10
3秒前
3秒前
研友_8yNA5L发布了新的文献求助10
3秒前
4秒前
雨落瑾年完成签到,获得积分10
4秒前
于浩发布了新的文献求助10
4秒前
小蘑菇应助束负允三金采纳,获得10
4秒前
DEF完成签到,获得积分10
4秒前
4秒前
5秒前
12完成签到,获得积分10
5秒前
bing完成签到,获得积分10
5秒前
小二郎应助饱满紫丝采纳,获得10
5秒前
5秒前
曦阳完成签到,获得积分10
5秒前
6秒前
张必雨发布了新的文献求助10
6秒前
6秒前
么么叽发布了新的文献求助10
6秒前
龙哥完成签到,获得积分10
6秒前
怡然问晴应助Jane采纳,获得10
6秒前
唐宁完成签到,获得积分10
6秒前
qiuqiu完成签到,获得积分10
7秒前
spoon1026完成签到,获得积分10
8秒前
不可靠月亮完成签到,获得积分10
8秒前
JamesPei应助豆芽采纳,获得10
8秒前
852应助熊一只采纳,获得10
9秒前
9秒前
很靠近海发布了新的文献求助30
9秒前
陶醉书包完成签到 ,获得积分10
9秒前
彩色冥幽完成签到,获得积分10
9秒前
三度和弦发布了新的文献求助10
10秒前
tt发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581022
求助须知:如何正确求助?哪些是违规求助? 3150661
关于积分的说明 9483675
捐赠科研通 2852321
什么是DOI,文献DOI怎么找? 1568107
邀请新用户注册赠送积分活动 734388
科研通“疑难数据库(出版商)”最低求助积分说明 720670