Enhancing Thermoelectric Performance of Mg3Sb2 Through Substitutional Doping: Sustainable Energy Solutions via First-Principles Calculations

兴奋剂 热电效应 热电材料 工程物理 材料科学 纳米技术 光电子学 物理 量子力学
作者
Muhammad Owais,Xian Luo,Huang Bin,Yanqing Yang,Mudassar Rehman,Ray Tahir Mushtaq
出处
期刊:Energies [MDPI AG]
卷期号:17 (21): 5358-5358
标识
DOI:10.3390/en17215358
摘要

Mg3Sb2-based materials, part of the Zintl compound family, are known for their low thermal conductivity but face challenges in thermoelectric applications due to their low energy conversion efficiency. This study addressed these limitations through first-principles calculations using the CASTEP module in Materials Studio 8.0, aiming to enhance the thermoelectric performance of Mg3Sb2 via strategic doping. Density functional theory (DFT) calculations were performed to analyze electronic properties, including band structure and density of states (D.O.S.), providing insights into the influence of various dopants. The semiclassical Boltzmann transport theory, implemented in BoltzTrap (version 1.2.5), was used to evaluate key thermoelectric properties such as the Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and electronic figure of merit (eZT). The results indicate that doping significantly improved the thermoelectric properties of Mg3Sb2, facilitating a transition from p-type to n-type behavior. Bi doping reduced the band gap from 0.401 eV to 0.144 eV, increasing carrier concentration and mobility, resulting in an electrical conductivity of 1.66 × 106 S/m and an eZT of 0.757. Ge doping increased the Seebeck coefficient to −392.1 μV/K at 300 K and reduced the band gap to 0.09 eV, achieving an electronic ZT of 0.859 with low thermal conductivity (11 W/mK). Si doping enhanced stability and achieved an electrical conductivity of 1.627 × 106 S/m with an electronic thermal conductivity of 11.3 W/mK, improving thermoelectric performance. These findings established the potential of doped Mg3Sb2 as a highly efficient thermoelectric material, paving the way for future research and applications in sustainable energy solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助郝宝真采纳,获得10
刚刚
852应助伶俐的书白采纳,获得10
刚刚
科研通AI2S应助结实康采纳,获得10
刚刚
今后应助韦一手采纳,获得10
刚刚
1秒前
嘎嘎嘎嘎发布了新的文献求助10
3秒前
3秒前
jingjing完成签到,获得积分10
3秒前
Peyton Why发布了新的文献求助10
4秒前
4秒前
caizx完成签到,获得积分10
4秒前
今后应助不语采纳,获得10
5秒前
6秒前
8秒前
Ava应助大方的青采纳,获得10
8秒前
SciGPT应助嘎嘎嘎嘎采纳,获得10
8秒前
8秒前
9秒前
jingjing发布了新的文献求助10
9秒前
北极熊不吃牙膏完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
stuffmatter应助hua采纳,获得200
10秒前
10秒前
颖中竹子发布了新的文献求助10
12秒前
畅快山兰完成签到 ,获得积分10
12秒前
12秒前
打打应助gaohar采纳,获得10
12秒前
13秒前
放克俊逸发布了新的文献求助10
13秒前
小胡发布了新的文献求助10
13秒前
吴雨峰发布了新的文献求助10
13秒前
13秒前
Wang发布了新的文献求助10
13秒前
che怕发布了新的文献求助10
14秒前
jiayou完成签到,获得积分10
14秒前
终陌发布了新的文献求助10
14秒前
wjl12345完成签到,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169952
求助须知:如何正确求助?哪些是违规求助? 2821202
关于积分的说明 7933111
捐赠科研通 2481494
什么是DOI,文献DOI怎么找? 1321790
科研通“疑难数据库(出版商)”最低求助积分说明 633371
版权声明 602562