生物降解
材料科学
抗菌剂
变形(气象学)
复合材料
化学
有机化学
作者
B. Aksakal,S. Sezek,Cevher Kürşat Macit
标识
DOI:10.1177/08853282241268682
摘要
Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and
科研通智能强力驱动
Strongly Powered by AbleSci AI