Multi-contrast image super-resolution with deformable attention and neighborhood-based feature aggregation (DANCE): Applications in anatomic and metabolic MRI

人工智能 对比度(视觉) 计算机视觉 特征(语言学) 舞蹈 计算机科学 超分辨率 图像(数学) 模式识别(心理学) 艺术 语言学 文学类 哲学
作者
Wenxuan Chen,Songdi Wu,Shuai Wang,Zhongsen Li,Yang Jia,Huifeng Yao,Qiyuan Tian,Xiaolei Song
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103359-103359
标识
DOI:10.1016/j.media.2024.103359
摘要

Multi-contrast magnetic resonance imaging (MRI) reflects information about human tissues from different perspectives and has wide clinical applications. By utilizing the auxiliary information from reference images (Refs) in the easy-to-obtain modality, multi-contrast MRI super-resolution (SR) methods can synthesize high-resolution (HR) images from their low-resolution (LR) counterparts in the hard-to-obtain modality. In this study, we systematically discussed the potential impacts caused by cross-modal misalignments between LRs and Refs and, based on this discussion, proposed a novel deep-learning-based method with Deformable Attention and Neighborhood-based feature aggregation to be Computationally Efficient (DANCE) and insensitive to misalignments. Our method has been evaluated in two public MRI datasets, i.e., IXI and FastMRI, and an in-house MR metabolic imaging dataset with amide proton transfer weighted (APTW) images. Experimental results reveal that our method consistently outperforms baselines in various scenarios, with significant superiority observed in the misaligned group of IXI dataset and the prospective study of the clinical dataset. The robustness study proves that our method is insensitive to misalignments, maintaining an average PSNR of 30.67 dB when faced with a maximum range of ±9°and ±9 pixels of rotation and translation on Refs. Given our method's desirable comprehensive performance, good robustness, and moderate computational complexity, it possesses substantial potential for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36456657应助kk采纳,获得10
1秒前
我是老大应助妮儿采纳,获得10
1秒前
鞑靼发布了新的文献求助10
2秒前
GengYing发布了新的文献求助10
2秒前
旺德福关注了科研通微信公众号
2秒前
24发布了新的文献求助20
4秒前
fanfan发布了新的文献求助10
4秒前
哈哈恬发布了新的文献求助10
5秒前
6秒前
芜湖哈哈哈关注了科研通微信公众号
6秒前
8秒前
9秒前
情怀应助橙子橙子橙子采纳,获得10
10秒前
SciGPT应助飞云采纳,获得10
12秒前
14秒前
妮儿发布了新的文献求助10
14秒前
毛豆爸爸应助kk采纳,获得20
15秒前
张航发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
Hello应助端庄的魔镜采纳,获得10
17秒前
17秒前
18秒前
小马甲应助我喜欢大学霸采纳,获得10
18秒前
怡然铃铛发布了新的文献求助10
19秒前
弥生完成签到,获得积分10
19秒前
乐乐应助宸1采纳,获得10
21秒前
21秒前
21秒前
ding应助放飞的羊驼采纳,获得10
22秒前
张立佳完成签到 ,获得积分10
22秒前
纯情的枫发布了新的文献求助10
22秒前
16发布了新的文献求助10
22秒前
duoa完成签到,获得积分20
22秒前
23秒前
完美世界应助Solar energy采纳,获得10
24秒前
王炎欣发布了新的文献求助10
24秒前
NI发布了新的文献求助10
24秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829