亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MLG-YOLO: A Model for Real-Time Accurate Detection and Localization of Winter Jujube in Complex Structured Orchard Environments

果园 计算机科学 人工智能 目标检测 计算机视觉 遥感 模式识别(心理学) 地理 园艺 生物
作者
Chenhao Yu,Xiaoyi Shi,Wenkai Luo,Junzhe Feng,Zhouzhou Zheng,Ayanori Yorozu,Yaohua Hu,Jiapan Guo
出处
期刊:Plant phenomics [AAAS00]
卷期号:6 被引量:1
标识
DOI:10.34133/plantphenomics.0258
摘要

Our research focuses on winter jujube trees and is conducted in a greenhouse environment in a structured orchard to effectively control various growth conditions. The development of a robotic system for winter jujube harvesting is crucial for achieving mechanized harvesting. Harvesting winter jujubes efficiently requires accurate detection and location. To address this issue, we proposed a winter jujube detection and localization method based on the MobileVit-Large selective kernel-GSConv-YOLO (MLG-YOLO) model. First, a winter jujube dataset is constructed to comprise various scenarios of lighting conditions and leaf obstructions to train the model. Subsequently, the MLG-YOLO model based on YOLOv8n is proposed, with improvements including the incorporation of MobileViT to reconstruct the backbone and keep the model more lightweight. The neck is enhanced with LSKblock to capture broader contextual information, and the lightweight convolutional technology GSConv is introduced to further improve the detection accuracy. Finally, a 3-dimensional localization method combining MLG-YOLO with RGB-D cameras is proposed. Through ablation studies, comparative experiments, 3-dimensional localization error tests, and full-scale tree detection tests in laboratory environments and structured orchard environments, the effectiveness of the MLG-YOLO model in detecting and locating winter jujubes is confirmed. With MLG-YOLO, the mAP increases by 3.50%, while the number of parameters is reduced by 61.03% in comparison with the baseline YOLOv8n model. Compared with mainstream object detection models, MLG-YOLO excels in both detection accuracy and model size, with a mAP of 92.70%, a precision of 86.80%, a recall of 84.50%, and a model size of only 2.52 MB. The average detection accuracy in the laboratory environmental testing of winter jujube reached 100%, and the structured orchard environmental accuracy reached 92.82%. The absolute positioning errors in the
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
三井库里发布了新的文献求助10
7秒前
26秒前
Odile完成签到 ,获得积分0
27秒前
47秒前
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
remohu完成签到,获得积分10
1分钟前
老石完成签到 ,获得积分10
2分钟前
3分钟前
66发布了新的文献求助10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
66完成签到 ,获得积分20
3分钟前
4分钟前
yaoyao发布了新的文献求助10
4分钟前
英俊的铭应助yaoyao采纳,获得10
4分钟前
niuhuhu完成签到,获得积分10
4分钟前
科研通AI5应助老实松鼠采纳,获得10
4分钟前
4分钟前
baobeikk发布了新的文献求助10
4分钟前
老实松鼠发布了新的文献求助10
4分钟前
牛八先生完成签到,获得积分10
5分钟前
5分钟前
Yportne完成签到,获得积分10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
Andy_2024应助科研通管家采纳,获得30
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
小蘑菇应助Yportne采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477466
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110158
捐赠科研通 2760379
什么是DOI,文献DOI怎么找? 1514880
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604