Gating-Enhanced Hierarchical Structure Learning in Hyperbolic Space and Multi-scale Neighbor Topology Learning in Euclidean Space for Prediction of Microbe-Drug Associations

拓扑(电路) 空格(标点符号) 比例(比率) 欧几里得空间 计算机科学 k-最近邻算法 欧几里德距离 欧几里德几何 人工智能 数学 生物系统 物理 生物 组合数学 几何学 量子力学 操作系统
作者
Ping Xuan,Chunhong Guan,Sentao Chen,Jing Gu,Xiuju Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01340
摘要

Identifying drug-related microbes may help us explore how the microbes affect the functions of drugs by promoting or inhibiting their effects. Most previous methods for the prediction of microbe-drug associations focused on integrating the attributes and topologies of microbe and drug nodes in Euclidean space. The heterogeneous network composed of microbes and drugs has a hierarchical structure, and the hyperbolic space is helpful for reflecting the structure. However, the previous methods did not fully exploit the structure. We propose a multi-space feature learning enhanced microbe-drug association prediction method, MFLP, to fuse the hierarchical structure of microbe and drug nodes in hyperbolic space and the multiscale neighbor topologies in Euclidean space. First, we project the nodes of the microbe-drug heterogeneous network on the sphere in hyperbolic space and then construct a topology which implies hierarchical structure and forms a hierarchical attribute embedding. The node information from multiple types of neighbor nodes with the new topological structure in the tangent plane space of a sphere is aggregated by the designed gating-enhanced hyperbolic graph neural network. Second, the gate at the node feature level is constructed to adaptively fuse the hierarchical features of microbe and drug nodes from two adjacent graph neural encoding layers. Third, multiple neighbor topological embeddings for each microbe and drug node are formed by neighborhood random walks on the microbe-drug heterogeneous network, and they cover neighborhood topologies with multiple scales, respectively. Finally, as each scale of topological embedding contains its specific neighborhood topology, we establish an independent graph convolutional neural network for the topology and form the topological representations of microbe and drug nodes in Euclidean space. The comparison experiments based on cross validation showed that MFLP outperformed several advanced prediction methods, and the ablation experiments verified the effectiveness of MFLP's major innovations. The case studies on three drugs further demonstrated MFLP's ability in being applied to discover potential candidate microbes for the given drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yar给chen的求助进行了留言
1秒前
故晨发布了新的文献求助10
1秒前
1秒前
2秒前
万能图书馆应助Sir.夏季风采纳,获得10
2秒前
3秒前
隐形的小蚂蚁完成签到,获得积分10
3秒前
3秒前
猫丫发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
WSGQT发布了新的文献求助10
4秒前
5秒前
6秒前
小二郎应助叶寻采纳,获得30
6秒前
大橙子完成签到 ,获得积分10
8秒前
8秒前
daimin完成签到,获得积分10
8秒前
超帅凡阳完成签到,获得积分10
9秒前
Keyl发布了新的文献求助10
9秒前
lcz完成签到,获得积分10
10秒前
古夕发布了新的文献求助10
10秒前
10秒前
Lucas应助semon采纳,获得10
11秒前
chensiyao完成签到,获得积分10
12秒前
善学以致用应助chen采纳,获得10
12秒前
12秒前
酷波er应助风趣的南霜采纳,获得10
14秒前
彭于彦祖应助科研通管家采纳,获得30
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
lii应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得30
15秒前
ding应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得20
15秒前
smottom应助科研通管家采纳,获得20
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021