Gating-Enhanced Hierarchical Structure Learning in Hyperbolic Space and Multi-scale Neighbor Topology Learning in Euclidean Space for Prediction of Microbe-Drug Associations

拓扑(电路) 空格(标点符号) 比例(比率) 欧几里得空间 计算机科学 k-最近邻算法 欧几里德距离 欧几里德几何 人工智能 数学 生物系统 物理 生物 组合数学 几何学 量子力学 操作系统
作者
Ping Xuan,Chunhong Guan,Sentao Chen,Jing Gu,Xiuju Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01340
摘要

Identifying drug-related microbes may help us explore how the microbes affect the functions of drugs by promoting or inhibiting their effects. Most previous methods for the prediction of microbe-drug associations focused on integrating the attributes and topologies of microbe and drug nodes in Euclidean space. The heterogeneous network composed of microbes and drugs has a hierarchical structure, and the hyperbolic space is helpful for reflecting the structure. However, the previous methods did not fully exploit the structure. We propose a multi-space feature learning enhanced microbe-drug association prediction method, MFLP, to fuse the hierarchical structure of microbe and drug nodes in hyperbolic space and the multiscale neighbor topologies in Euclidean space. First, we project the nodes of the microbe-drug heterogeneous network on the sphere in hyperbolic space and then construct a topology which implies hierarchical structure and forms a hierarchical attribute embedding. The node information from multiple types of neighbor nodes with the new topological structure in the tangent plane space of a sphere is aggregated by the designed gating-enhanced hyperbolic graph neural network. Second, the gate at the node feature level is constructed to adaptively fuse the hierarchical features of microbe and drug nodes from two adjacent graph neural encoding layers. Third, multiple neighbor topological embeddings for each microbe and drug node are formed by neighborhood random walks on the microbe-drug heterogeneous network, and they cover neighborhood topologies with multiple scales, respectively. Finally, as each scale of topological embedding contains its specific neighborhood topology, we establish an independent graph convolutional neural network for the topology and form the topological representations of microbe and drug nodes in Euclidean space. The comparison experiments based on cross validation showed that MFLP outperformed several advanced prediction methods, and the ablation experiments verified the effectiveness of MFLP's major innovations. The case studies on three drugs further demonstrated MFLP's ability in being applied to discover potential candidate microbes for the given drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayberichard完成签到,获得积分10
1秒前
LINDENG2004完成签到 ,获得积分10
7秒前
wz完成签到,获得积分10
8秒前
简奥斯汀完成签到 ,获得积分10
15秒前
五本笔记完成签到 ,获得积分10
15秒前
18秒前
花花发布了新的文献求助20
18秒前
asd113发布了新的文献求助10
22秒前
美满的小蘑菇完成签到 ,获得积分10
22秒前
自然白安完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
31秒前
等待小鸽子完成签到 ,获得积分10
33秒前
龙虾发票完成签到,获得积分10
40秒前
小康学弟完成签到 ,获得积分10
40秒前
了0完成签到 ,获得积分10
40秒前
慕青应助科研通管家采纳,获得10
43秒前
彭于晏应助科研通管家采纳,获得30
43秒前
毛豆爸爸应助科研通管家采纳,获得20
43秒前
林利芳完成签到 ,获得积分0
44秒前
JaneChen完成签到 ,获得积分10
46秒前
健壮惋清完成签到 ,获得积分10
46秒前
47秒前
gabee完成签到 ,获得积分10
51秒前
liang19640908完成签到 ,获得积分10
54秒前
奋斗的雪曼完成签到 ,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
1分钟前
LELE完成签到 ,获得积分10
1分钟前
了0完成签到 ,获得积分10
1分钟前
apocalypse完成签到 ,获得积分10
1分钟前
guhao完成签到 ,获得积分10
1分钟前
指导灰完成签到 ,获得积分10
1分钟前
善良的火完成签到 ,获得积分10
1分钟前
优雅夕阳完成签到 ,获得积分10
1分钟前
Jasper应助光亮的自行车采纳,获得10
1分钟前
miki完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
KX2024完成签到,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
nusiew完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022