Gating-Enhanced Hierarchical Structure Learning in Hyperbolic Space and Multi-scale Neighbor Topology Learning in Euclidean Space for Prediction of Microbe-Drug Associations

拓扑(电路) 空格(标点符号) 比例(比率) 欧几里得空间 计算机科学 k-最近邻算法 欧几里德距离 欧几里德几何 人工智能 数学 生物系统 物理 生物 组合数学 几何学 量子力学 操作系统
作者
Ping Xuan,Chunhong Guan,Sentao Chen,Jing Gu,Xiuju Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01340
摘要

Identifying drug-related microbes may help us explore how the microbes affect the functions of drugs by promoting or inhibiting their effects. Most previous methods for the prediction of microbe-drug associations focused on integrating the attributes and topologies of microbe and drug nodes in Euclidean space. The heterogeneous network composed of microbes and drugs has a hierarchical structure, and the hyperbolic space is helpful for reflecting the structure. However, the previous methods did not fully exploit the structure. We propose a multi-space feature learning enhanced microbe-drug association prediction method, MFLP, to fuse the hierarchical structure of microbe and drug nodes in hyperbolic space and the multiscale neighbor topologies in Euclidean space. First, we project the nodes of the microbe-drug heterogeneous network on the sphere in hyperbolic space and then construct a topology which implies hierarchical structure and forms a hierarchical attribute embedding. The node information from multiple types of neighbor nodes with the new topological structure in the tangent plane space of a sphere is aggregated by the designed gating-enhanced hyperbolic graph neural network. Second, the gate at the node feature level is constructed to adaptively fuse the hierarchical features of microbe and drug nodes from two adjacent graph neural encoding layers. Third, multiple neighbor topological embeddings for each microbe and drug node are formed by neighborhood random walks on the microbe-drug heterogeneous network, and they cover neighborhood topologies with multiple scales, respectively. Finally, as each scale of topological embedding contains its specific neighborhood topology, we establish an independent graph convolutional neural network for the topology and form the topological representations of microbe and drug nodes in Euclidean space. The comparison experiments based on cross validation showed that MFLP outperformed several advanced prediction methods, and the ablation experiments verified the effectiveness of MFLP's major innovations. The case studies on three drugs further demonstrated MFLP's ability in being applied to discover potential candidate microbes for the given drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助小孙采纳,获得10
刚刚
小蘑菇应助火树银花采纳,获得30
刚刚
shaw发布了新的文献求助10
1秒前
tivyg'lk发布了新的文献求助10
1秒前
牛安荷完成签到,获得积分10
2秒前
3秒前
领导范儿应助杜克采纳,获得10
3秒前
4秒前
xiaoxia完成签到,获得积分10
4秒前
5秒前
yolanda发布了新的文献求助10
6秒前
shangchen完成签到,获得积分10
6秒前
6秒前
Akim应助诗雨采纳,获得10
6秒前
smt发布了新的文献求助10
7秒前
白华苍松发布了新的文献求助20
8秒前
Aubrey关注了科研通微信公众号
8秒前
9秒前
9秒前
跳跃的寄瑶完成签到,获得积分20
9秒前
Lizhiiiy完成签到,获得积分10
10秒前
MoodMeed完成签到,获得积分10
10秒前
薰硝壤应助wille采纳,获得10
11秒前
11秒前
11秒前
GG发布了新的文献求助10
11秒前
XL发布了新的文献求助10
11秒前
charry完成签到,获得积分10
12秒前
酷波er应助felix采纳,获得10
12秒前
koly完成签到 ,获得积分10
12秒前
杜克完成签到,获得积分10
12秒前
12秒前
梦里繁花发布了新的文献求助80
12秒前
13秒前
敬老院N号应助粥粥采纳,获得20
13秒前
13秒前
Hang完成签到,获得积分10
13秒前
ATREE完成签到,获得积分10
13秒前
Zhaoyuemeng完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147764
求助须知:如何正确求助?哪些是违规求助? 2798817
关于积分的说明 7831609
捐赠科研通 2455685
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587