Optimization of the extraction process of total steroids from Phillinus gilvus (Schwein.) Pat. by artificial neural network (ANN)-response surface methodology and identification of extract constituents

色谱法 萃取(化学) 响应面法 化学 人工神经网络 人工智能 计算机科学
作者
Xiang Gao,Junxia Ma,Fengfu Li,Qian Zhou,Dan Gao
出处
期刊:Preparative Biochemistry & Biotechnology [Informa]
卷期号:: 1-14
标识
DOI:10.1080/10826068.2024.2394449
摘要

Phillinus gilvus (Schwein.) Pat has pharmacological effects such as tonifying the spleen, dispelling dampness, and strengthening the stomach, in which sterol is one of the main compounds of P. gilvus, but there has not been thought you to its extraction and detailed identification of its composition, in the present study, we used artificial neural network (ANN) and response surface methodology (RSM) to optimize the conditions of ultrasonic-assisted extraction, and the parameters of the independent and interaction effects were evaluated. Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) was used to identify the major components in the purified extract. The results showed that the optimal extraction process conditions were: ultrasonic time 96 min, ultrasonic power 140 W, liquid to material ratio 1:25 g/ml, and ultrasonic temperature 30.7 °C. The compliance rates of the predicted and experimental values for the artificial neural network model and the response surface model were 98.3% and 96.12%, respectively, indicating that both models have the potential to be used for optimizing the extraction process of P. gilvus in industry. A total of 120 compounds and 30 major steroids were identified by comparison with the reference compounds. Among the major steroidal components are these findings will contribute to the isolation and utilization of active ingredients in P. gilvus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光亮笑蓝发布了新的文献求助10
1秒前
半文完成签到,获得积分10
1秒前
sloan完成签到,获得积分10
1秒前
HHH发布了新的文献求助10
1秒前
斯文败类应助Huang采纳,获得10
1秒前
1秒前
可爱的函函应助万默采纳,获得10
2秒前
Jonathan完成签到,获得积分10
2秒前
yui完成签到,获得积分20
2秒前
2秒前
诚心寄灵完成签到,获得积分10
2秒前
希望天下0贩的0应助3399采纳,获得10
3秒前
3秒前
会飞的猪发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
zhenjl发布了新的文献求助10
4秒前
鱼女士发布了新的文献求助10
4秒前
4秒前
合适的小蜜蜂完成签到,获得积分10
4秒前
wschenau完成签到,获得积分10
5秒前
英姑应助强健的电源采纳,获得10
5秒前
6秒前
奋斗的怀曼完成签到,获得积分10
6秒前
yui发布了新的文献求助10
6秒前
6秒前
6秒前
asdasdas完成签到,获得积分10
6秒前
ziming313发布了新的文献求助10
6秒前
6秒前
noleeway发布了新的文献求助10
7秒前
NexusExplorer应助夜之枫采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
溟夔蝶魅发布了新的文献求助10
7秒前
烟花应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
隐形之玉发布了新的文献求助10
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144703
求助须知:如何正确求助?哪些是违规求助? 2796148
关于积分的说明 7818215
捐赠科研通 2452316
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449