Advancing toward precision migraine treatment: Predicting responses to preventive medications with machine learning models based on patient and migraine features

偏头痛 医学 托吡酯 氟桂利嗪 噻吗洛尔 阿替洛尔 纳多洛尔 阿米替林 诺曲普利 偏头痛治疗 内科学 普萘洛尔 癫痫 青光眼 血压 精神科 眼科
作者
Chia‐Chun Chiang,Todd J. Schwedt,Gina Dumkrieger,Liguo Wang,Chieh‐Ju Chao,Heather A. Ouellette,Imon Banerjee,Yi‐Chieh Chen,Brandon Jones,Krista M. Burke,Han Wang,Ann Murray,Monique M. Montenegro,Jennifer I. Stern,Mark Whealy,Narayan Kissoon,F. Michael Cutrer
出处
期刊:Headache [Wiley]
卷期号:64 (9): 1094-1108 被引量:17
标识
DOI:10.1111/head.14806
摘要

Abstract Objective To develop machine learning models using patient and migraine features that can predict treatment responses to commonly used migraine preventive medications. Background Currently, there is no accurate way to predict response to migraine preventive medications, and the standard trial‐and‐error approach is inefficient. Methods In this cohort study, we analyzed data from the Mayo Clinic Headache database prospectively collected from 2001 to December 2023. Adult patients with migraine completed questionnaires during their initial headache consultation to record detailed clinical features and then at each follow‐up to track preventive medication changes and monthly headache days. We included patients treated with at least one of the following migraine preventive medications: topiramate, beta‐blockers (propranolol, metoprolol, atenolol, nadolol, timolol), tricyclic antidepressants (amitriptyline, nortriptyline), verapamil, gabapentin, onabotulinumtoxinA, and calcitonin gene‐related peptide (CGRP) monoclonal antibodies (mAbs) (erenumab, fremanezumab, galcanezumab, eptinezumab). We pre‐trained a deep neural network, “TabNet,” using 145 variables, then employed TabNet‐embedded data to construct prediction models for each medication to predict binary outcomes (responder vs. non‐responder). A treatment responder was defined as having at least a 30% reduction in monthly headache days from baseline. All model performances were evaluated, and metrics were reported in the held‐out test set (train 85%, test 15%). SHapley Additive exPlanations (SHAP) were conducted to determine variable importance. Results Our final analysis included 4260 patients. The responder rate for each medication ranged from 28.7% to 34.9%, and the mean time to treatment outcome for each medication ranged from 151.3 to 209.5 days. The CGRP mAb prediction model achieved a high area under the receiver operating characteristics curve (AUC) of 0.825 (95% confidence interval [CI] 0.726, 0.920) and an accuracy of 0.80 (95% CI 0.70, 0.88). The AUCs of prediction models for beta‐blockers, tricyclic antidepressants, topiramate, verapamil, gabapentin, and onabotulinumtoxinA were: 0.664 (95% CI 0.579, 0.745), 0.611 (95% CI 0.562, 0.682), 0.605 (95% CI 0.520, 0.688), 0.673 (95% CI 0.569, 0.724), 0.628 (0.533, 0.661), and 0.581 (95% CI 0.550, 0.632), respectively. Baseline monthly headache days, age, body mass index (BMI), duration of migraine attacks, responses to previous medication trials, cranial autonomic symptoms, family history of headache, and migraine attack triggers were among the most important variables across all models. A variable could have different contributions; for example, lower BMI predicts responsiveness to CGRP mAbs and beta‐blockers, while higher BMI predicts responsiveness to onabotulinumtoxinA, topiramate, and gabapentin. Conclusion We developed an accurate prediction model for CGRP mAbs treatment response, leveraging detailed migraine features gathered from a headache questionnaire before starting treatment. Employing the same methods, the model performances for other medications were less impressive, though similar to the machine learning models reported in the literature for other diseases. This may be due to CGRP mAbs being migraine‐specific. Incorporating medical comorbidities, genomic, and imaging factors might enhance the model performance. We demonstrated that migraine characteristics are important in predicting treatment responses and identified the most crucial predictors for each of the seven types of preventive medications. Our results suggest that precision migraine treatment is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
英勇的严青完成签到,获得积分10
2秒前
3秒前
云止完成签到 ,获得积分10
5秒前
研友_Zb1rln发布了新的文献求助10
6秒前
可可西里发布了新的文献求助80
8秒前
fanxiangli完成签到,获得积分20
9秒前
12秒前
隐形曼青应助Painkiller_采纳,获得10
13秒前
肥猫完成签到,获得积分10
15秒前
16秒前
此时此刻完成签到,获得积分10
17秒前
mary完成签到,获得积分10
18秒前
情怀应助凯撒采纳,获得10
19秒前
小蘑菇应助6and1采纳,获得30
20秒前
不二完成签到 ,获得积分10
21秒前
21秒前
小曾完成签到,获得积分10
22秒前
研友_VZG7GZ应助归海亦云采纳,获得10
23秒前
23秒前
23秒前
6666发布了新的文献求助10
26秒前
龙龙冲完成签到,获得积分20
26秒前
26秒前
27秒前
mary发布了新的文献求助10
28秒前
活力惜海发布了新的文献求助10
30秒前
凯撒发布了新的文献求助10
31秒前
33秒前
英俊的铭应助Painkiller_采纳,获得10
34秒前
JuntaoLi发布了新的文献求助10
35秒前
大模型应助fanxiangli采纳,获得10
36秒前
呼延子默发布了新的文献求助10
40秒前
112发布了新的文献求助10
40秒前
顾矜应助灶鲜森采纳,获得10
41秒前
离言完成签到,获得积分10
41秒前
42秒前
44秒前
rubbishbaby发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400