Advancing toward precision migraine treatment: Predicting responses to preventive medications with machine learning models based on patient and migraine features

偏头痛 医学 托吡酯 氟桂利嗪 噻吗洛尔 阿替洛尔 纳多洛尔 阿米替林 诺曲普利 偏头痛治疗 内科学 普萘洛尔 癫痫 青光眼 血压 精神科 眼科
作者
Chia‐Chun Chiang,Todd J. Schwedt,Gina Dumkrieger,Li Wang,Chieh‐Ju Chao,Heather A. Ouellette,Imon Banerjee,Yi‐Chieh Chen,Brandon Jones,Katherine Burke,Han Wang,Ann Murray,Monique M. Montenegro,Jennifer I. Stern,Mark Whealy,Narayan R. Kissoon,F. Michael Cutrer
出处
期刊:Headache [Wiley]
标识
DOI:10.1111/head.14806
摘要

Abstract Objective To develop machine learning models using patient and migraine features that can predict treatment responses to commonly used migraine preventive medications. Background Currently, there is no accurate way to predict response to migraine preventive medications, and the standard trial‐and‐error approach is inefficient. Methods In this cohort study, we analyzed data from the Mayo Clinic Headache database prospectively collected from 2001 to December 2023. Adult patients with migraine completed questionnaires during their initial headache consultation to record detailed clinical features and then at each follow‐up to track preventive medication changes and monthly headache days. We included patients treated with at least one of the following migraine preventive medications: topiramate, beta‐blockers (propranolol, metoprolol, atenolol, nadolol, timolol), tricyclic antidepressants (amitriptyline, nortriptyline), verapamil, gabapentin, onabotulinumtoxinA, and calcitonin gene‐related peptide (CGRP) monoclonal antibodies (mAbs) (erenumab, fremanezumab, galcanezumab, eptinezumab). We pre‐trained a deep neural network, “TabNet,” using 145 variables, then employed TabNet‐embedded data to construct prediction models for each medication to predict binary outcomes (responder vs. non‐responder). A treatment responder was defined as having at least a 30% reduction in monthly headache days from baseline. All model performances were evaluated, and metrics were reported in the held‐out test set (train 85%, test 15%). SHapley Additive exPlanations (SHAP) were conducted to determine variable importance. Results Our final analysis included 4260 patients. The responder rate for each medication ranged from 28.7% to 34.9%, and the mean time to treatment outcome for each medication ranged from 151.3 to 209.5 days. The CGRP mAb prediction model achieved a high area under the receiver operating characteristics curve (AUC) of 0.825 (95% confidence interval [CI] 0.726, 0.920) and an accuracy of 0.80 (95% CI 0.70, 0.88). The AUCs of prediction models for beta‐blockers, tricyclic antidepressants, topiramate, verapamil, gabapentin, and onabotulinumtoxinA were: 0.664 (95% CI 0.579, 0.745), 0.611 (95% CI 0.562, 0.682), 0.605 (95% CI 0.520, 0.688), 0.673 (95% CI 0.569, 0.724), 0.628 (0.533, 0.661), and 0.581 (95% CI 0.550, 0.632), respectively. Baseline monthly headache days, age, body mass index (BMI), duration of migraine attacks, responses to previous medication trials, cranial autonomic symptoms, family history of headache, and migraine attack triggers were among the most important variables across all models. A variable could have different contributions; for example, lower BMI predicts responsiveness to CGRP mAbs and beta‐blockers, while higher BMI predicts responsiveness to onabotulinumtoxinA, topiramate, and gabapentin. Conclusion We developed an accurate prediction model for CGRP mAbs treatment response, leveraging detailed migraine features gathered from a headache questionnaire before starting treatment. Employing the same methods, the model performances for other medications were less impressive, though similar to the machine learning models reported in the literature for other diseases. This may be due to CGRP mAbs being migraine‐specific. Incorporating medical comorbidities, genomic, and imaging factors might enhance the model performance. We demonstrated that migraine characteristics are important in predicting treatment responses and identified the most crucial predictors for each of the seven types of preventive medications. Our results suggest that precision migraine treatment is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助温暖天与采纳,获得10
刚刚
ember完成签到 ,获得积分10
1秒前
没有逗应助天真过客采纳,获得10
1秒前
开朗的傲儿完成签到 ,获得积分10
2秒前
wdqd发布了新的文献求助10
4秒前
wojwosjns完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
AL完成签到,获得积分10
6秒前
壹号完成签到,获得积分10
6秒前
文几完成签到 ,获得积分10
6秒前
李健应助Tici采纳,获得10
6秒前
寒冷的莫茗完成签到,获得积分10
6秒前
彭于晏应助成就的冰绿采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
raziel完成签到,获得积分10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
InfoNinja应助科研通管家采纳,获得60
9秒前
打打应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助afaf采纳,获得10
10秒前
Proddy发布了新的文献求助10
10秒前
12秒前
TTTT发布了新的文献求助10
12秒前
SGQT发布了新的文献求助10
12秒前
单薄茗完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
笨笨凡之完成签到,获得积分10
15秒前
16秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046