Advancing toward precision migraine treatment: Predicting responses to preventive medications with machine learning models based on patient and migraine features

偏头痛 医学 托吡酯 氟桂利嗪 噻吗洛尔 阿替洛尔 纳多洛尔 阿米替林 诺曲普利 偏头痛治疗 内科学 普萘洛尔 癫痫 青光眼 血压 精神科 眼科
作者
Chia‐Chun Chiang,Todd J. Schwedt,Gina Dumkrieger,Liguo Wang,Chieh‐Ju Chao,Heather A. Ouellette,Imon Banerjee,Yi‐Chieh Chen,Brandon Jones,Krista M. Burke,Han Wang,Ann Murray,Monique M. Montenegro,Jennifer I. Stern,Mark Whealy,Narayan Kissoon,F. Michael Cutrer
出处
期刊:Headache [Wiley]
卷期号:64 (9): 1094-1108 被引量:17
标识
DOI:10.1111/head.14806
摘要

Abstract Objective To develop machine learning models using patient and migraine features that can predict treatment responses to commonly used migraine preventive medications. Background Currently, there is no accurate way to predict response to migraine preventive medications, and the standard trial‐and‐error approach is inefficient. Methods In this cohort study, we analyzed data from the Mayo Clinic Headache database prospectively collected from 2001 to December 2023. Adult patients with migraine completed questionnaires during their initial headache consultation to record detailed clinical features and then at each follow‐up to track preventive medication changes and monthly headache days. We included patients treated with at least one of the following migraine preventive medications: topiramate, beta‐blockers (propranolol, metoprolol, atenolol, nadolol, timolol), tricyclic antidepressants (amitriptyline, nortriptyline), verapamil, gabapentin, onabotulinumtoxinA, and calcitonin gene‐related peptide (CGRP) monoclonal antibodies (mAbs) (erenumab, fremanezumab, galcanezumab, eptinezumab). We pre‐trained a deep neural network, “TabNet,” using 145 variables, then employed TabNet‐embedded data to construct prediction models for each medication to predict binary outcomes (responder vs. non‐responder). A treatment responder was defined as having at least a 30% reduction in monthly headache days from baseline. All model performances were evaluated, and metrics were reported in the held‐out test set (train 85%, test 15%). SHapley Additive exPlanations (SHAP) were conducted to determine variable importance. Results Our final analysis included 4260 patients. The responder rate for each medication ranged from 28.7% to 34.9%, and the mean time to treatment outcome for each medication ranged from 151.3 to 209.5 days. The CGRP mAb prediction model achieved a high area under the receiver operating characteristics curve (AUC) of 0.825 (95% confidence interval [CI] 0.726, 0.920) and an accuracy of 0.80 (95% CI 0.70, 0.88). The AUCs of prediction models for beta‐blockers, tricyclic antidepressants, topiramate, verapamil, gabapentin, and onabotulinumtoxinA were: 0.664 (95% CI 0.579, 0.745), 0.611 (95% CI 0.562, 0.682), 0.605 (95% CI 0.520, 0.688), 0.673 (95% CI 0.569, 0.724), 0.628 (0.533, 0.661), and 0.581 (95% CI 0.550, 0.632), respectively. Baseline monthly headache days, age, body mass index (BMI), duration of migraine attacks, responses to previous medication trials, cranial autonomic symptoms, family history of headache, and migraine attack triggers were among the most important variables across all models. A variable could have different contributions; for example, lower BMI predicts responsiveness to CGRP mAbs and beta‐blockers, while higher BMI predicts responsiveness to onabotulinumtoxinA, topiramate, and gabapentin. Conclusion We developed an accurate prediction model for CGRP mAbs treatment response, leveraging detailed migraine features gathered from a headache questionnaire before starting treatment. Employing the same methods, the model performances for other medications were less impressive, though similar to the machine learning models reported in the literature for other diseases. This may be due to CGRP mAbs being migraine‐specific. Incorporating medical comorbidities, genomic, and imaging factors might enhance the model performance. We demonstrated that migraine characteristics are important in predicting treatment responses and identified the most crucial predictors for each of the seven types of preventive medications. Our results suggest that precision migraine treatment is feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
莫莫妙完成签到 ,获得积分10
2秒前
zqlxueli完成签到 ,获得积分10
3秒前
握不住的沙完成签到,获得积分10
3秒前
钟梓袄发布了新的文献求助10
3秒前
4秒前
why11starry发布了新的文献求助10
4秒前
4秒前
乂氼完成签到,获得积分20
5秒前
叶枫完成签到,获得积分10
6秒前
shfgref完成签到,获得积分10
6秒前
七里香发布了新的文献求助10
7秒前
Endeavor完成签到,获得积分10
7秒前
7秒前
摸鱼鱼完成签到,获得积分10
9秒前
9秒前
可怜的课题组补助完成签到,获得积分20
9秒前
科研通AI6应助乂氼采纳,获得10
9秒前
10秒前
曾利凤完成签到 ,获得积分10
10秒前
10秒前
10秒前
CipherSage应助woodenfish采纳,获得10
10秒前
10秒前
11秒前
研友_VZG7GZ应助烽火戏诸侯采纳,获得10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
xxfsx应助爱云采纳,获得10
13秒前
13秒前
27发布了新的文献求助10
14秒前
15秒前
soda发布了新的文献求助10
15秒前
无事小神仙完成签到,获得积分20
15秒前
完美世界应助OAO采纳,获得10
16秒前
16秒前
憨憨发布了新的文献求助10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304