Understanding internal dynamics of state anxiety during COVID‐19 pandemic: Seven‐wave longitudinal findings via panel network analysis

大流行 2019年冠状病毒病(COVID-19) 焦虑 动力学(音乐) 纵向研究 2019-20冠状病毒爆发 心理学 纵向数据 医学 病毒学 社会学 人口学 精神科 内科学 疾病 教育学 病理 爆发 传染病(医学专业)
作者
Yimei Zhang,Zhihao Ma
出处
期刊:Applied Psychology: Health and Well-being [Wiley]
卷期号:16 (4): 2421-2437 被引量:3
标识
DOI:10.1111/aphw.12599
摘要

Abstract Research on state anxiety has long been dominated by the traditional psychometric approach that assumes anxiety symptoms have a common cause. Yet state anxiety can be conceptualized as a network system. In this study, we utilized data from the COVID‐Dynamic dataset from waves 7 to 13, collected at three‐week intervals from June 6, 2020, to October 13, 2020, and included 1,042 valid participants to characterize the internal dynamics of state anxiety. Using the Gaussian graphical model along with strength centrality, we estimated three network models of state anxiety. The between‐subjects and contemporaneous network showed numerous positive relations between items and some unexpected negative relations. Three communities were identified in the between‐subjects network, and two communities were identified in the contemporaneous network. The temporal network showed the coexistence of positive and negative predictions between items after three weeks. Several items exhibited significant positive autocorrelations after three weeks. These findings have implications for anxiety theory and clinical interventions at between‐subjects and within‐subjects levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zoey采纳,获得10
刚刚
王速临发布了新的文献求助10
刚刚
刚刚
我是弱智先帮我完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
核桃应助kangkang采纳,获得10
3秒前
圆子完成签到,获得积分10
3秒前
3秒前
cherry323发布了新的文献求助10
3秒前
SciGPT应助11采纳,获得10
4秒前
4秒前
4秒前
刘小蕊发布了新的文献求助10
4秒前
杜杜完成签到 ,获得积分10
4秒前
4秒前
4秒前
诺奖就在前方完成签到,获得积分20
5秒前
阿修罗完成签到,获得积分10
5秒前
5秒前
jacob258发布了新的文献求助10
5秒前
浮游应助xxx采纳,获得10
5秒前
Liskiat2021完成签到,获得积分10
6秒前
hu完成签到,获得积分20
6秒前
6秒前
小5发布了新的文献求助10
6秒前
豆浆发布了新的文献求助10
6秒前
小猪完成签到,获得积分10
6秒前
杨苗苗完成签到,获得积分10
7秒前
eghiefefe发布了新的文献求助10
7秒前
7秒前
美人鱼发布了新的文献求助10
7秒前
公司账号2发布了新的文献求助10
8秒前
魔魔胡胡胡萝卜完成签到,获得积分10
9秒前
9秒前
赘婿应助shjcold采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472693
求助须知:如何正确求助?哪些是违规求助? 4574967
关于积分的说明 14349488
捐赠科研通 4502296
什么是DOI,文献DOI怎么找? 2467064
邀请新用户注册赠送积分活动 1455042
关于科研通互助平台的介绍 1429246