Hydrogen bond-induced supramolecular self-assembly strategy to fabricate ultra-dispersed Cu-loaded porous tubular graphitic carbon nitride with rich nitrogen vacancies and CuN sites for efficient photo-Fenton catalysis
The low utilization of visible light and easy recombination of charge carriers of graphitic carbon nitride (CN) restrain its application as photo-electron donor and metal site support in photo-Fenton system. Herein, a hydrogen bond-induced supramolecular self-assembly strategy was created to fabricate an ultra-dispersed Cu-loaded porous tubular CN composite (CA-Cu/TCN) by the hydrothermal-pyrolysis method with citric acid (CA) as initiator and chelating agent. CA-Cu/TCN with rich nitrogen vacancies (NVs) and abundant ultra-dispersed CuN