物理
极地的
动力学(音乐)
探测器
机械
统计物理学
计算物理学
经典力学
航空航天工程
光学
声学
天文
工程类
作者
Xinyu Hu,Yingjie Wei,Cong Wang
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-07-01
卷期号:36 (7)
被引量:1
摘要
Investigating the dynamic behavior of polar detectors holds significance for the polar exploration of clean energy production. This paper uses computational fluid dynamics and the discrete element method, complemented by laboratory experiments, to systematically explore the water entry dynamics of a projectile passing through a zone of crushed ice accumulation. The research analyzes the influence of different crushed ice accumulation heights (ha) and water entry conditions on cavity formation, flow field distribution, and dynamic characteristics as the projectile passes through the crushed ice zone. Moreover, the influence of multi-body coupling on the movement of crushed ice and fluid is analyzed. The findings reveal alterations in the water entry behavior of the projectile due to the presence of the crushed ice accumulation zone. A notable two-way coupling mechanism between crushed ice and fluid is identified: crushed ice particles influence liquid level fluctuations and cavity evolution, while fluid flow impacts the movement of crushed ice particles. As the height of crushed ice accumulation increases, this coupling effect intensifies, leading to changes in the flow field distribution near the cavity and the hydrodynamic behavior of the projectile. While the alteration in water entry Froude number (Fr) may not significantly alter the evolution pattern of the liquid level flow field, it notably affects the distribution range and formation scale of the flow field characteristics. Additionally, the water entry Fr influences the load characteristics of the projectile as it passes through the crushed ice zone.
科研通智能强力驱动
Strongly Powered by AbleSci AI