Identification of Senescence-Related Genes for the Prediction of Ulcerative Colitis Based on Interpretable Machine Learning Models

溃疡性结肠炎 鉴定(生物学) 衰老 计算生物学 生物 基因 人工智能 计算机科学 遗传学 医学 植物 内科学 疾病
作者
Jingjing Ma,Chen Chen,Nian Wang,Ting Fang,Yinghui Liu,Pengzhan He,Weiguo Dong
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 18: 3431-3447
标识
DOI:10.2147/jir.s508396
摘要

Background: Cellular senescence, a hallmark of aging, significantly contributes to the pathology of ulcerative colitis (UC). Despite this, the role of senescence-related genes in UC remains largely undefined. This study seeks to clarify the impact of cellular senescence on UC by identifying key senescence-related genes and developing diagnostic models with potential clinical utility. Methods: Clinical data and gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Senescence-related differentially expressed genes (sene-DEGs) between patients with UC and healthy controls were identified using various bioinformatics techniques. Functional enrichment and immune infiltration analyses were performed to understand subtype characteristics derived from sene-DEGs through consensus clustering. Machine learning algorithms were employed to select feature genes from sene-DEGs, and their expression was validated across multiple independent datasets and human specimens. A nomogram incorporating these feature genes was created and assessed, with its diagnostic performance evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Results: Fourteen senescence-related differential genes were identified between patients with UC and healthy controls. These genes enabled the classification of patients with UC into molecular subtypes via unsupervised clustering. ABCB1 and LCN2 emerged as central hub genes through machine learning and feature importance analysis. ROC analysis verified their diagnostic value across various datasets. Validation in independent datasets and human specimens supported the bioinformatics findings. Furthermore, the expression levels of ABCB1 and LCN2 showed significant associations with immune cell profiles. The logistic regression (LR) model based on these genes demonstrated accurate UC prediction, as confirmed by ROC curve analysis. The nomogram model, constructed with feature genes, exhibited outstanding prediction capabilities, supported by DCA, C index, and calibration curve assessments. Conclusion: This integrated bioinformatics approach identified ABCB1 and LCN2 as significant biomarkers associated with cellular senescence. These findings enhance the understanding of cellular senescence in UC pathogenesis and propose its potential as a valuable diagnostic biomarker. Keywords: ulcerative colitis, cellular senescence, biomarkers, diagnostic model, machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王胤应助lala采纳,获得30
4秒前
4秒前
4秒前
wzx完成签到,获得积分10
4秒前
4秒前
Micale完成签到,获得积分10
4秒前
隐形曼青应助安君灿采纳,获得10
5秒前
5秒前
DreamerKing发布了新的文献求助10
5秒前
大模型应助美满冷安采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
cybbbbbb应助科研通管家采纳,获得10
6秒前
万能图书馆应助uglyb散退采纳,获得10
7秒前
wcdwcd发布了新的文献求助10
7秒前
9秒前
Hello应助起起采纳,获得10
9秒前
bkagyin应助iii采纳,获得10
10秒前
lsy完成签到,获得积分10
12秒前
FashionBoy应助现代冬瓜采纳,获得10
13秒前
13秒前
思源应助猪猪hero采纳,获得10
13秒前
14秒前
CodeCraft应助wcdwcd采纳,获得10
14秒前
徐浩彬发布了新的文献求助30
16秒前
小马甲应助李喜喜采纳,获得10
17秒前
科研通AI5应助小猪咪采纳,获得10
18秒前
美满冷安发布了新的文献求助10
19秒前
黎明发布了新的文献求助10
19秒前
19秒前
20秒前
西西完成签到,获得积分10
20秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749099
求助须知:如何正确求助?哪些是违规求助? 3292389
关于积分的说明 10076350
捐赠科研通 3007880
什么是DOI,文献DOI怎么找? 1651883
邀请新用户注册赠送积分活动 786858
科研通“疑难数据库(出版商)”最低求助积分说明 751861