Delivery of exogenous nucleic acids (NAs) for gene regulation in bacteria, bypassing the barrier of the cell wall, is essential for advancing fundamental microbiology and genetic engineering, and the treatment of bacterial diseases. However, current methods that rely on electrical or chemical interventions are limited by their complexity, specialized expertise, and laboratory-specific instrumentation. This study explores the capability of gold nanoclusters (AuNCs) as carriers for delivering small-interfering RNA and antisense oligonucleotides into bacteria for targeted gene regulation while shielding them from degradation during transport. By enhancing the cytoplasmic membrane permeability, the AuNCs enable efficient internalization of NAs into both Gram-positive and Gram-negative bacteria while exerting negligible influence on bacterial activity. It is demonstrated that the rationally designed NAs can be released from the AuNCs within bacteria, enabling ~70% knockdown of mecA in Methicillin-resistant Staphylococcus aureus (MRSA). This significantly reduces MRSA's antibiotic resistance and enhances oxacillin treatment efficacy. Furthermore, the successful silencing of ligA in Escherichia coli and pilQ in Pseudomonas aeruginosa highlights the broad adaptability of the approach across diverse bacterial species. The AuNCs-based next-generation NA delivery system has the potential to transform bacterial gene regulation-previously restricted to laboratory settings-into a versatile and scalable solution for real-world application.