已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prognostic models for survival predictions in advanced cancer patients: a systematic review and meta-analysis

医学 荟萃分析 介绍 内科学 奇纳 缓和医疗 统计的 肿瘤科 梅德林 递归分区 系统回顾 重症监护医学 统计 心理干预 家庭医学 精神科 政治学 护理部 法学 数学
作者
Mong Yung Fung,Yuen Lung Wong,Ka Man Cheung,Kelvin K H Bao,W. Sung
出处
期刊:BMC Palliative Care [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12904-025-01696-4
摘要

Abstract Background Prognostication of survival among patients with advanced cancer is essential for palliative care (PC) planning. The implementation of a clinical point-of-care prognostic model may inform clinicians and facilitate decision-making. While early PC referral yields better clinical outcomes, actual referral time differs by clinical contexts and accessible. To summarize the various prognostic models that may cater to these needs, we conducted a systematic review and meta-analysis. Methods A systematic literature search was conducted in Ovid Medline, Embase, CINAHL Ultimate, and Scopus to identify eligible studies focusing on incurable solid tumors, validation of prognostic models, and measurement of predictive performances. Model characteristics and performances were summarized in tables. Prediction model study Risk Of Bias Assessment Tool (PROBAST) was adopted for risk of bias assessment. Meta-analysis of individual models, where appropriate, was performed by pooling C-index. Results 35 studies covering 35 types of prognostic models were included. Palliative Prognostic Index (PPI), Palliative Prognostic Score (PaP), and Objective Prognostic Score (OPS) were most frequently identified models. The pooled C-statistic of PPI for 30-day survival prediction was 0.68 (95% CI: 0.62–0.73, n = 6). The pooled C-statistic of PaP for 30-day survival prediction was 0.76 (95% CI: 0.70–0.80, n = 11), while that for 21-day survival prediction was 0.80 (0.71–0.86, n = 4). The pooled C-statistic of OPS for 30-days survival prediction was 0.69 (95% CI: 0.65–0.72, n = 3). All included studies had high risk of bias. Conclusion PaP appears to perform better but further validation and implementation studies were needed for confirmation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助null采纳,获得10
1秒前
physicalproblem完成签到,获得积分10
1秒前
4秒前
执着乐双完成签到,获得积分10
4秒前
zbx完成签到,获得积分20
5秒前
Daodao完成签到,获得积分10
7秒前
踏实书文发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
zbx发布了新的文献求助10
9秒前
Doctor_Mill完成签到,获得积分10
10秒前
乐乐应助平常的乘云采纳,获得10
10秒前
11秒前
Skye完成签到 ,获得积分10
12秒前
13秒前
顺利毕业完成签到,获得积分10
14秒前
Daodao发布了新的文献求助10
14秒前
pgmm完成签到 ,获得积分10
15秒前
null发布了新的文献求助10
15秒前
18秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
传奇3应助踏实书文采纳,获得10
24秒前
隐形曼青应助撒发顺丰采纳,获得10
27秒前
27秒前
huzhu123发布了新的文献求助10
29秒前
隐形曼青应助笑点低千愁采纳,获得10
30秒前
33秒前
lhl完成签到,获得积分10
34秒前
甜甜甜完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助30
38秒前
41秒前
荔枝荔枝关注了科研通微信公众号
42秒前
48秒前
量子星尘发布了新的文献求助10
49秒前
50秒前
JamesPei应助zbx采纳,获得10
50秒前
善学以致用应助gr采纳,获得10
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762711
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185