Cancer is among the most challenging diseases to manage, affecting millions of lives today. Numerous treatment approaches have been employed to combat cancer, each with its own limitations. One approach involves using anticancer medications that, regrettably, come with significant side effects. One reason for these issues is the lack of specificity in anticancer drugs, which can harm healthy tissues alongside targeted cancer cells. In this research, our goal is to minimize side effects and enhance drug effectiveness through advanced drug delivery techniques. The metal–organic framework (MOF) was swiftly created at the nanoscale using solvothermal synthesis. The NMOF-74 particles measure is nanometric in size and have a surface area of 950 m2 g–1. After the introduction of 5-fluorouracil, a coating of poly(acrylic acid) polymer was applied to the nanocarrier. The biocompatible nanocarrier demonstrated a strong ability to absorb the drug. The bioresorbable nanocarrier gradually and evenly released 97.9% of the drug in the simulated environment. This indicates that 5-FLU/NMOF-74 released the drug in a controlled and pH-responsive manner. The robustness of the compatible nanocarrier was tested across various pH levels and was found to remain stable at pH 1.2 for up to 72 h. The toxicity evaluation performed over a 24 h period on the MCF-7 cell line at various concentrations demonstrates that the compatible nanocarrier performs significantly better than the free drug regarding its impact on breast cancer cells.