🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A feasibility study of automating radiotherapy planning with large language model agents

工作流程 放射治疗计划 平面图(考古学) 放射治疗 医学物理学 计算机科学 近距离放射治疗 医学 放射科 数据库 历史 考古
作者
Qingxin Wang,Zhongqiu Wang,Minghua Li,Xinye Ni,Ruth Tan,Wenwen Zhang,Maitudi Wubulaishan,Wei Wang,Zhiyong Yuan,Zhen Zhang,Cong Liu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adbff1
摘要

Abstract Objective : Radiotherapy planning requires significant expertise to balance tumor control and organ-at-risk (OAR) sparing. Automated planning can improve both efficiency and quality. This study introduces GPT-Plan, a novel multi-agent system powered by the GPT-4 family of large language models (LLMs), for automating the iterative radiotherapy plan optimization. Approach : GPT-Plan uses LLM-driven agents, mimicking the collaborative clinical workflow of a dosimetrist and physicist, to iteratively generate and evaluate text-based radiotherapy plans based on predefined criteria. Supporting tools assist the agents by leveraging historical plans, mitigating LLM hallucinations, and balancing exploration and exploitation. Performance was evaluated on 12 lung (IMRT) and 5 cervical (VMAT) cancer cases, benchmarked against the ECHO auto-planning method and manual plans. The impact of historical plan retrieval on efficiency was also assessed. Results : For IMRT lung cancer cases, GPT-Plan generated high-quality plans, demonstrating superior target coverage and homogeneity compared to ECHO while maintaining comparable or better OAR sparing. For VMAT cervical cancer cases, plan quality was comparable to a senior physicist and consistently superior to a junior physicist, particularly for OAR sparing. Retrieving historical plans significantly reduced the number of required optimization iterations for lung cases (p < 0.01) and yielded iteration counts comparable to those of the senior physicist for cervical cases (p=0.313). Occasional LLM hallucinations have been mitigated by self-reflection mechanisms. One limitation was the inaccuracy of vision-based LLMs in interpreting dose images. Significance : This pioneering study demonstrates the feasibility of automating radiotherapy planning using LLM-powered agents for complex treatment decision-making tasks. While challenges remain in addressing LLM limitations, ongoing advancements hold potential for further refining and expanding GPT-Plan's capabilities.&#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助Grayball采纳,获得10
1秒前
luqiu完成签到,获得积分10
1秒前
1秒前
光亮笑柳发布了新的文献求助10
1秒前
852应助小杨爱吃羊采纳,获得10
2秒前
王欣宇完成签到 ,获得积分10
2秒前
3秒前
3秒前
笑一七完成签到,获得积分10
3秒前
英俊的铭应助愉快彩虹采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
碲匠完成签到,获得积分20
5秒前
5秒前
6秒前
十一发布了新的文献求助10
6秒前
寒冷诗霜应助学术蝗虫采纳,获得10
6秒前
Bingzheng发布了新的文献求助10
6秒前
6秒前
开心夏云完成签到 ,获得积分10
7秒前
金子完成签到,获得积分10
7秒前
zhang狗子发布了新的文献求助10
7秒前
慕青应助科研小废物采纳,获得10
7秒前
Grayball发布了新的文献求助10
9秒前
Kakoala发布了新的文献求助10
9秒前
9秒前
liurh1114发布了新的文献求助10
9秒前
Akim应助要吃烧饼么采纳,获得10
10秒前
CCC发布了新的文献求助10
11秒前
nenoaowu发布了新的文献求助10
12秒前
mpc发布了新的文献求助10
13秒前
今后应助高兴问凝采纳,获得10
14秒前
小田发布了新的文献求助10
14秒前
合适的灵枫完成签到,获得积分10
14秒前
zhaosangongzi完成签到,获得积分10
14秒前
李健应助晁子枫采纳,获得10
15秒前
NexusExplorer应助司空三毒采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3597961
求助须知:如何正确求助?哪些是违规求助? 3166098
关于积分的说明 9551324
捐赠科研通 2872859
什么是DOI,文献DOI怎么找? 1577290
邀请新用户注册赠送积分活动 741303
科研通“疑难数据库(出版商)”最低求助积分说明 724624