A Scenario-Based Approach to Using Electric Vehicle Batteries in Virtual Power Plants: Insights from Environmental, Social, and Governance and Monte Carlo Simulations

蒙特卡罗方法 公司治理 电动汽车 功率(物理) 工程类 环境科学 环境经济学 计算机科学 业务 经济 物理 统计 数学 财务 量子力学
作者
Seungryong Choi,Keuntae Cho
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:17 (7): 3224-3224
标识
DOI:10.3390/su17073224
摘要

The intensified global focus on the energy transition and sustainability has increased the drive to leverage electric vehicle (EV) batteries as virtual power plant (VPP) resources. However, uncertainties and governance factors associated with this integration have not been systematically researched. This study aimed to identify and evaluate the key uncertainties surrounding the deployment of EV batteries in VPPs and propose strategic responses from an ESG perspective. We adopted a mixed-methods approach using scenario planning to identify critical uncertainties. The approach included quantitative assessments using Monte Carlo simulations and a scenario matrix to incorporate ESG elements into future projections. The findings highlighted economic value volatility (E: 13.37%), employment creation potential and sustainability (S: 10.68%), and increased transparency requirements (G: 8.60%) as the most influential uncertainty factors based on the simulation results. These variables formed the basis for selecting three core drivers for scenario construction. Four distinct scenarios were identified. By proposing tailored response strategies for each scenario, this study suggests that the long-term sustainability of EV batteries and VPP industries can be bolstered in various potential future environments. Integrating ESG factors into a scenario analysis helps decision-making in industries characterized by high uncertainty. The study offers strategies that embed ESG considerations to support the sustainability of EV batteries and VPP sectors and provides valuable insights for shaping policies, industrial strategies, and corporate ESG initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
隐形曼青应助星星采纳,获得10
1秒前
HP发布了新的文献求助10
2秒前
Cwx2020完成签到,获得积分10
2秒前
8R60d8应助Physio采纳,获得10
2秒前
思与省发布了新的文献求助10
3秒前
ZKcrane完成签到,获得积分10
4秒前
5秒前
6秒前
科目三应助蕊蕊采纳,获得10
7秒前
wangxiaoqing完成签到,获得积分10
7秒前
萧萧完成签到,获得积分10
8秒前
liam发布了新的文献求助50
8秒前
劲秉应助红尘侠客采纳,获得150
8秒前
充电宝应助sandra采纳,获得10
9秒前
阳枝甘禄发布了新的文献求助10
10秒前
独立江湖女完成签到 ,获得积分10
11秒前
一帆风顺发布了新的文献求助50
11秒前
wangfang完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
思与省完成签到,获得积分10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
14秒前
我是老大应助科研通管家采纳,获得30
14秒前
情怀应助科研通管家采纳,获得10
15秒前
ash完成签到,获得积分10
15秒前
HP完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765