Cross-Modality Distillation for Multi-modal Tracking

模态(人机交互) 人工智能 计算机科学 情态动词 跟踪(教育) 计算机视觉 模式识别(心理学) 机器学习 心理学 教育学 化学 高分子化学
作者
Tianlu Zhang,Qiang Zhang,Kurt Debattista,Jungong Han
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2025.3555485
摘要

Contemporary multi-modal trackers achieve strong performance by leveraging complex backbones and fusion strategies, but this comes at the cost of computational efficiency, limiting their deployment in resource-constrained settings. On the other hand, compact multi-modal trackers are more efficient but often suffer from reduced performance due to limited feature representation. To mitigate the performance gap between compact and more complex trackers, we introduce a cross-modality distillation framework. This framework includes a complementarity-aware mask autoencoder designed to enhance cross-modal interactions by selectively masking patches within a modality, thereby forcing the model to learn more robust multi-modal representations. Additionally, we present a specific-common feature distillation module that transfers both modality-specific and shared information from a more powerful model's backbone to the compact model. Moreover, we develop a multi-path selection distillation module to guide a simple fusion module in learning more accurate multi-modal information from a sophisticated fusion mechanism using multiple paths. Extensive experiments on six multi-modal tracking benchmarks demonstrate that the proposed tracker, despite being lightweight, outperforms most state-of-the-art methods, highlighting its effectiveness. Notably, our tiny variant achieves a PR score of 67.5% on LasHeR, a PR score of 58.5% on DepthTrack, and a PR score of 73.1% on VisEvent with only 6.5 M parameters, while operating at 126 FPS on an NVIDIA 2080Ti GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
albertxin发布了新的文献求助10
刚刚
充电宝应助wang采纳,获得10
刚刚
1秒前
Wangran完成签到,获得积分10
2秒前
李睿杰完成签到,获得积分20
2秒前
领导范儿应助小林不熬夜采纳,获得10
2秒前
ling发布了新的文献求助10
2秒前
Lucas应助由由采纳,获得10
3秒前
3秒前
孤独安珊完成签到,获得积分10
3秒前
电脑桌发布了新的文献求助10
4秒前
4秒前
田様应助白日梦采纳,获得10
5秒前
慕青应助ljj001ljj采纳,获得10
5秒前
搜集达人应助mmmm采纳,获得10
5秒前
7秒前
黄某发布了新的文献求助10
7秒前
Meleo发布了新的文献求助10
8秒前
优美荆发布了新的文献求助10
8秒前
9秒前
刘澄伊完成签到,获得积分10
9秒前
10秒前
10秒前
受伤金鑫完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
subtle5114发布了新的文献求助10
14秒前
在水一方应助xwl采纳,获得10
15秒前
15秒前
Wilddeer发布了新的文献求助30
15秒前
电脑桌完成签到,获得积分10
15秒前
lyy完成签到,获得积分10
16秒前
chen发布了新的文献求助10
16秒前
xuefupu发布了新的文献求助30
16秒前
风中沂完成签到 ,获得积分10
17秒前
善学以致用应助zsg采纳,获得10
17秒前
白日梦发布了新的文献求助10
17秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724321
求助须知:如何正确求助?哪些是违规求助? 3269814
关于积分的说明 9962200
捐赠科研通 2984300
什么是DOI,文献DOI怎么找? 1637329
邀请新用户注册赠送积分活动 777453
科研通“疑难数据库(出版商)”最低求助积分说明 747035