作者
Biswajeet Acharya,Amulyaratna Behera,Srikanta Moharana,Bhupendra G. Prajapati,Suchismeeta Behera
摘要
Nanoparticles, defined by their nanoscale dimensions and unique physicochemical properties, are widely utilized in healthcare, electronics, environmental sciences, and consumer products. However, increasing evidence of their potential embryotoxic effects during pregnancy underscores the need for a molecular-level understanding of their interactions during embryonic development. Nanoparticles such as titanium dioxide, silver, cerium oxide, copper oxide, and quantum dots can cross the placental barrier and interfere with crucial developmental processes. At the molecular level, they disrupt signaling pathways like Wnt and Hedgehog, induce oxidative stress and inflammation, and cause genotoxic effects, all critical during sensitive phases, such as organogenesis. Furthermore, these nanoparticles interact directly with cellular components, including DNA, proteins, and lipids, impairing cellular function and viability. Innovative strategies to mitigate nanoparticle toxicity, such as surface modifications and incorporation of biocompatible coatings, are discussed as potential solutions to reduce adverse molecular interactions. Various laboratory animal models used to investigate nanoparticle-induced embryotoxicity are evaluated for their efficacy and limitations, providing insights into their applicability for understanding these effects. This Account examines the molecular mechanisms by which nanoparticles compromise embryonic development and emphasizes the importance of designing safer nanoparticles to minimize maternal-fetal exposure risks, particularly in biomedical applications.