Enhancing multi-gas detectability using photoacoustic spectroscopy capable of simultaneous detection, highly selectivity and less cross-interference is essential for dissolved gas sensing application. A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH