Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 哲学 语言学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩手链发布了新的文献求助10
2秒前
2秒前
啊帅完成签到,获得积分10
3秒前
3秒前
3秒前
请叫我表情帝完成签到 ,获得积分10
4秒前
能干大树完成签到,获得积分10
4秒前
4秒前
5秒前
惊执虫儿完成签到,获得积分10
7秒前
7秒前
Cheng完成签到 ,获得积分10
7秒前
8秒前
hhh发布了新的文献求助30
8秒前
9秒前
JJ完成签到,获得积分10
9秒前
9秒前
10秒前
幸福大白发布了新的文献求助10
10秒前
单纯面包应助无敌小宽哥采纳,获得10
11秒前
Q123ba叭发布了新的文献求助10
12秒前
科研通AI2S应助asdfqwer采纳,获得10
12秒前
领导范儿应助一只虎斑猫采纳,获得10
13秒前
来一客温暖完成签到,获得积分10
14秒前
你是我的唯一完成签到 ,获得积分10
15秒前
FUNG发布了新的文献求助10
15秒前
鬲木发布了新的文献求助10
15秒前
科研通AI2S应助111采纳,获得10
15秒前
纵横天下发布了新的文献求助30
15秒前
Lucas应助自觉绿柏采纳,获得10
16秒前
16秒前
Clover04应助闫伊森采纳,获得10
16秒前
乐乐应助坚定岂愈采纳,获得10
16秒前
16秒前
高高的巨人完成签到 ,获得积分10
17秒前
老肖应助乐乐乐乐乐乐采纳,获得10
18秒前
19秒前
一只虎斑猫完成签到,获得积分10
19秒前
拼搏的金针菇完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954