Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 语言学 哲学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MM完成签到 ,获得积分10
刚刚
lll发布了新的文献求助10
刚刚
萱1988发布了新的文献求助10
刚刚
俭朴的身影完成签到,获得积分10
1秒前
NexusExplorer应助张瑜采纳,获得30
2秒前
斯文雪青完成签到,获得积分10
3秒前
3秒前
糊糊完成签到 ,获得积分0
4秒前
别吃我的鱼完成签到,获得积分10
4秒前
醋溜爆肚儿完成签到,获得积分10
5秒前
David发布了新的文献求助10
5秒前
5秒前
asdfqwer完成签到,获得积分0
5秒前
6秒前
6秒前
满天完成签到,获得积分10
7秒前
霸气雯完成签到,获得积分10
7秒前
ChiariRay发布了新的文献求助10
7秒前
神内小天使完成签到,获得积分10
8秒前
韭菜盒子发布了新的文献求助10
9秒前
田超完成签到,获得积分10
9秒前
周老师完成签到 ,获得积分10
9秒前
充电宝应助背后的大米采纳,获得10
9秒前
Zora发布了新的文献求助10
9秒前
10秒前
hhgcc完成签到,获得积分10
10秒前
10秒前
林晚停完成签到,获得积分10
10秒前
10秒前
zorro3574发布了新的文献求助10
11秒前
wanci应助Mia采纳,获得10
12秒前
12秒前
向雨竹完成签到,获得积分10
12秒前
XiaoMaomi完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
sx发布了新的文献求助10
13秒前
tonight发布了新的文献求助10
14秒前
BowieHuang应助David采纳,获得10
14秒前
顺利毕业耶耶耶完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685844
关于积分的说明 14840076
捐赠科研通 4675267
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471141