亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 语言学 哲学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助虚幻的城采纳,获得10
2秒前
秋祭完成签到,获得积分10
4秒前
大个应助自信人生二百年采纳,获得10
4秒前
6秒前
星辰大海应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
ZH完成签到 ,获得积分10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
吕吕吕完成签到 ,获得积分10
17秒前
果冻橙完成签到,获得积分10
19秒前
28秒前
wisher完成签到 ,获得积分10
30秒前
仙女完成签到 ,获得积分10
32秒前
龙子黄发布了新的文献求助10
35秒前
完美世界应助秋祭采纳,获得10
40秒前
paomo发布了新的文献求助10
41秒前
内向绿凝完成签到,获得积分10
44秒前
不知名网友完成签到 ,获得积分10
46秒前
科研通AI6应助CHORHIN采纳,获得10
46秒前
科研通AI6应助欣慰的馒头采纳,获得10
46秒前
paomo完成签到,获得积分10
51秒前
mmyhn发布了新的文献求助10
53秒前
朱颜完成签到,获得积分10
53秒前
56秒前
1分钟前
Charlie发布了新的文献求助10
1分钟前
今后应助王瑶采纳,获得10
1分钟前
徐zhipei完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小白完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535