Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 语言学 哲学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
流水完成签到,获得积分10
1秒前
英俊的铭应助杨雨婷采纳,获得10
2秒前
车窗外发布了新的文献求助10
2秒前
水硕发布了新的文献求助10
2秒前
陈末应助派提克采纳,获得10
2秒前
3秒前
斐然诗发布了新的文献求助10
3秒前
4秒前
景时完成签到,获得积分10
4秒前
交理完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
桐桐应助Espoir采纳,获得10
6秒前
6秒前
7秒前
芝麻糊了发布了新的文献求助20
7秒前
皓月千里完成签到,获得积分10
8秒前
8秒前
8秒前
猫猫虫完成签到,获得积分10
8秒前
小鱼儿完成签到,获得积分10
9秒前
10秒前
wanci应助平安喜乐采纳,获得10
10秒前
11秒前
南川发布了新的文献求助10
12秒前
12秒前
12秒前
福yyy完成签到 ,获得积分10
12秒前
13秒前
13秒前
Jsihao发布了新的文献求助10
13秒前
14秒前
纯真醉波发布了新的文献求助10
15秒前
小流浪发布了新的文献求助10
15秒前
Lillian完成签到,获得积分10
15秒前
思源应助无限的绿兰采纳,获得10
16秒前
16秒前
jayus完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280