Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 语言学 哲学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
fbtj完成签到 ,获得积分10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
小毛发布了新的文献求助10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得200
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
南栀发布了新的文献求助10
1秒前
无心客应助科研通管家采纳,获得10
1秒前
1秒前
QOP应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
背后夜蓉完成签到 ,获得积分10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
chenqiumu应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得100
2秒前
zzzz发布了新的文献求助10
2秒前
chenqiumu应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
传奇3应助maction采纳,获得10
3秒前
kento发布了新的文献求助30
3秒前
Criminology34应助俊逸沅采纳,获得10
4秒前
岳岳发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352677
求助须知:如何正确求助?哪些是违规求助? 4485481
关于积分的说明 13963212
捐赠科研通 4385463
什么是DOI,文献DOI怎么找? 2409427
邀请新用户注册赠送积分活动 1401828
关于科研通互助平台的介绍 1375439