Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 哲学 语言学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuan发布了新的文献求助10
1秒前
2秒前
cc完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
一一发布了新的文献求助10
3秒前
领导范儿应助Chridy采纳,获得10
3秒前
4秒前
凤凰山发布了新的文献求助10
4秒前
4秒前
孔雨珍发布了新的文献求助10
4秒前
淡定的思松应助通~采纳,获得10
5秒前
5秒前
明亮的八宝粥完成签到,获得积分10
5秒前
mayungui发布了新的文献求助10
5秒前
大型海狮完成签到,获得积分10
5秒前
搜集达人应助科研菜鸟采纳,获得10
6秒前
雨天有伞完成签到,获得积分10
6秒前
蕾子发布了新的文献求助10
6秒前
6秒前
zhui发布了新的文献求助10
6秒前
wanci应助jxcandice采纳,获得10
6秒前
factor发布了新的文献求助10
6秒前
7秒前
泊声发布了新的文献求助20
7秒前
narthon完成签到 ,获得积分10
7秒前
梦幻完成签到,获得积分10
7秒前
1604531786完成签到,获得积分10
7秒前
研友_LMNjkn发布了新的文献求助10
8秒前
xiao发布了新的文献求助10
8秒前
ww发布了新的文献求助10
8秒前
9秒前
Olsters发布了新的文献求助10
9秒前
深情安青应助该睡觉啦采纳,获得10
9秒前
9秒前
SEV完成签到,获得积分20
9秒前
愉快迎荷完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794