Wheat Spikes Height Estimation Using Stereo Cameras

RGB颜色模型 最小边界框 卷积神经网络 人工智能 像素 计算机视觉 特征(语言学) 跳跃式监视 模式识别(心理学) 计算机科学 图像(数学) 语言学 哲学
作者
Amirhossein Zaji,Zheng Liu,Gaozhi Xiao,Pankaj Bhowmik,Jatinder S. Sangha,Yuefeng Ruan
标识
DOI:10.1109/tafe.2023.3262748
摘要

There is a positive correlation between wheat plant height and lodging, yield, and biomass. So, in precision agriculture, a high-throughput estimation of the wheat plant's height in terms of its spikes is essential. This study aims to develop a straightforward, cost-effective method for measuring the height of wheat plants using stereo cameras. To collect the required datasets, we conducted an experiment in which we collected RGB images along with their depth layer using two renowned stereo cameras, OAKD and D455. Then, we used a deep learning model called mask region-based convolutional neural networks to localize and distinguish the spikes in the collected images. In this study, we localized the wheat spikes using object detection (OD) and instance segmentation (IS) models. The advantage of the OD model over the IS model is that its bounding box annotation procedure in the data preparation phase is significantly faster than the IS model's polygon annotation. However, the disadvantage of OD is that there are many background pixels in each predicted bounding box, which reduces the performance of height estimation. To facilitate the annotation process of the collected datasets, we also developed a hybrid scale-invariant feature transform random forest-based active learning algorithm to transfer the annotations of one camera to the other. The results show that the OAKD camera performs better than the D455 camera for wheat plant height estimation due to its higher RGB quality and better matching of the mono camera images. Using the OAKD camera and IS model, the algorithm proposed in this study is able to estimate wheat height with mean absolute percentage error values of 0.75% and 0.67% at the spike and plot levels, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胖胖完成签到,获得积分10
1秒前
嘎嘎发布了新的文献求助10
1秒前
驼骆发布了新的文献求助10
1秒前
hkh完成签到,获得积分10
2秒前
那咋了完成签到,获得积分10
2秒前
大个应助谢谢采纳,获得10
3秒前
3秒前
默存完成签到,获得积分10
3秒前
美好的碧萱完成签到,获得积分10
4秒前
Hello应助漫天采纳,获得10
5秒前
cyyf发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
彭于晏应助小胖胖采纳,获得10
6秒前
陈子酒完成签到,获得积分10
6秒前
张欣童666发布了新的文献求助10
7秒前
mhuim发布了新的文献求助10
7秒前
dd36完成签到,获得积分10
8秒前
犹豫的初丹完成签到,获得积分10
8秒前
摆渡人发布了新的文献求助10
9秒前
魔幻安青完成签到,获得积分10
9秒前
华仔应助健康的幻珊采纳,获得10
9秒前
9秒前
10秒前
10秒前
刘钊扬完成签到,获得积分10
10秒前
Horizon完成签到 ,获得积分10
10秒前
bright发布了新的文献求助20
10秒前
二十而耳顺完成签到,获得积分10
11秒前
田様应助遇见馅儿饼采纳,获得10
12秒前
来了完成签到,获得积分10
12秒前
12秒前
12秒前
Neko发布了新的文献求助10
12秒前
勤奋帅帅完成签到,获得积分10
12秒前
ZZX完成签到,获得积分10
12秒前
xixi很困发布了新的文献求助20
12秒前
北辰完成签到,获得积分10
13秒前
sxh发布了新的文献求助30
13秒前
6wt完成签到,获得积分10
13秒前
丘比特应助淡定的含蕊采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539472
求助须知:如何正确求助?哪些是违规求助? 4626203
关于积分的说明 14598378
捐赠科研通 4567137
什么是DOI,文献DOI怎么找? 2503807
邀请新用户注册赠送积分活动 1481627
关于科研通互助平台的介绍 1453226