An Efficient Privacy-Enhancing Cross-Silo Federated Learning and Applications for False Data Injection Attack Detection in Smart Grids

计算机科学 新闻聚合器 方案(数学) 推论 加密 服务器 信息隐私 同态加密 分布式计算 计算机安全 人工智能 计算机网络 数学分析 数学 操作系统
作者
Hong-Yen Tran,Jiankun Hu,Xuefei Yin,H. R. Pota
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2538-2552 被引量:5
标识
DOI:10.1109/tifs.2023.3267892
摘要

Federated Learning is a prominent machine learning paradigm which helps tackle data privacy issues by allowing clients to store their raw data locally and transfer only their local model parameters to an aggregator server to collaboratively train a shared global model. However, federated learning is vulnerable to inference attacks from dishonest aggregators who can infer information about clients' training data from their model parameters. To deal with this issue, most of the proposed schemes in literature either require a non-colluded server setting, a trusted third-party to compute master secret keys or a secure multiparty computation protocol which is still inefficient over multiple iterations of computing an aggregation model. In this work, we propose an efficient cross-silo federated learning scheme with strong privacy preservation. By designing a double-layer encryption scheme which has no requirement to compute discrete logarithm, utilizing secret sharing only at the establishment phase and in the iterations when parties rejoin, and accelerating the computation performance via parallel computing, we achieve an efficient privacy-preserving federated learning protocol, which also allows clients to dropout and rejoin during the training process. The proposed scheme is demonstrated theoretically and empirically to provide provable privacy against an honest-but-curious aggregator server and simultaneously achieve desirable model utilities. The scheme is applied to false data injection attack detection (FDIA) in smart grids. This is a more secure cross-silo FDIA federated learning resilient to the local private data inference attacks than the existing works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助SAIL采纳,获得30
刚刚
小七完成签到 ,获得积分20
2秒前
2秒前
帅气西牛完成签到,获得积分10
5秒前
6秒前
传奇3应助虚幻的青槐采纳,获得10
7秒前
8秒前
科研通AI5应助超级铃铛采纳,获得10
9秒前
111发布了新的文献求助10
11秒前
橙子慢慢来完成签到,获得积分10
11秒前
12秒前
完美世界应助xu采纳,获得10
14秒前
露露发布了新的文献求助10
14秒前
16秒前
大个应助风中亦玉采纳,获得10
16秒前
禾薇完成签到,获得积分10
18秒前
huahuahua发布了新的文献求助30
19秒前
19秒前
伊丽莎白完成签到,获得积分10
20秒前
研友_VZG7GZ应助李同学采纳,获得10
21秒前
wpie99发布了新的文献求助30
26秒前
wangmou完成签到,获得积分10
26秒前
科研通AI5应助江谷林采纳,获得10
30秒前
30秒前
Hello应助禾薇采纳,获得10
31秒前
科研通AI5应助踏实的芸遥采纳,获得10
32秒前
科研通AI5应助蒹葭采纳,获得10
33秒前
李同学发布了新的文献求助10
34秒前
34秒前
杭永程完成签到 ,获得积分10
37秒前
37秒前
博弈春秋完成签到,获得积分10
40秒前
大林发布了新的文献求助10
40秒前
41秒前
43秒前
Crystal完成签到 ,获得积分10
43秒前
海阔天空完成签到,获得积分0
43秒前
江谷林完成签到,获得积分10
45秒前
45秒前
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423