Experimental study and machine learning prediction on compressive strength of spontaneous-combustion coal gangue aggregate concrete

抗压强度 下跌 材料科学 混凝土坍落度试验 骨料(复合) 灰浆 混凝土性能 固化(化学) 水泥 复合材料
作者
Tirui Zhang,Yuzhuo Zhang,Qinghe Wang,Atulinda Kato Aganyira,Yanfeng Fang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:71: 106518-106518 被引量:26
标识
DOI:10.1016/j.jobe.2023.106518
摘要

Spontaneous-combustion coal gangue aggregate (SCGA) has low physical properties and strong water absorption capacity. Previous studies are mostly based on the principle of equal mix proportion, which makes the slump of spontaneous-combustion coal gangue aggregate concrete (SCGAC) lower than that of natural aggregate concrete (NAC). This study obtained the compressive strength of SCGAC at different curing ages under the premise of similar concrete workability, and quantified the effect of SCGA content on the compressive strength of concrete; the meso-structure of SCGAC was obtained by SEM test to reveal the deterioration mechanism of SCGAC compressive performance; based on five independent machine learning (ML) algorithms and three ensemble ML algorithms, SCGAC compressive strength prediction models were proposed, and the prediction performance of each model was evaluated to quantify the importance of each influencing factor on the concrete compressive strength. The results show that by using pre-soaked SCGA and refining the concrete mix proportion, fresh concrete with different SCGA replacement ratios can exhibit similar slump values (70–75 mm); due to the weak interfacial transition zones (ITZs) between cement mortar and SCGA, and the inferior properties of SCGA, the compressive strengths of concrete with 100% replacement ratio at 7 d, 14 d, 28 d and 90 d were reduced by 15.3%, 16.7%, 22.0% and 21.6% respectively compared with NAC; the predictive ability of the ensemble ML models was higher than that of the independent ML models, and the XGB model had the best predictive ability; based on the feature importance analysis of SHAP value, it was found that SCGA density, aggregate-cement ratio and SCGA water absorption were the most important factors affecting the compressive strength of SCGAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
skyla~完成签到 ,获得积分10
刚刚
呜呜发布了新的文献求助10
刚刚
极品男大发布了新的文献求助10
刚刚
1秒前
1秒前
坦率以莲发布了新的文献求助20
1秒前
1+1发布了新的文献求助10
2秒前
bkagyin应助江水采纳,获得10
2秒前
清禾发布了新的文献求助10
2秒前
可乐发布了新的文献求助10
2秒前
义气季节发布了新的文献求助10
3秒前
3秒前
qwe发布了新的文献求助10
3秒前
情怀应助璀璨采纳,获得10
3秒前
拼搏半梦完成签到,获得积分10
3秒前
Solaris完成签到,获得积分20
4秒前
彭于晏应助追光少年采纳,获得10
4秒前
Tristan发布了新的文献求助20
4秒前
田様应助moumou采纳,获得10
4秒前
豆腐干豆腐干是法国完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
尊敬书萱完成签到 ,获得积分10
6秒前
zhairx完成签到,获得积分10
6秒前
6秒前
7秒前
脑洞疼应助lagom采纳,获得10
7秒前
Bi发布了新的文献求助10
7秒前
油炸小女孩完成签到,获得积分10
7秒前
7秒前
科研通AI5应助xinyike采纳,获得10
7秒前
8秒前
8秒前
商毛毛完成签到,获得积分10
8秒前
xiaoguang发布了新的文献求助30
8秒前
DAdump1ing发布了新的文献求助10
8秒前
8秒前
XR发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167443
求助须知:如何正确求助?哪些是违规求助? 4359422
关于积分的说明 13572960
捐赠科研通 4205794
什么是DOI,文献DOI怎么找? 2306607
邀请新用户注册赠送积分活动 1306223
关于科研通互助平台的介绍 1252822