亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Experimental study and machine learning prediction on compressive strength of spontaneous-combustion coal gangue aggregate concrete

抗压强度 下跌 材料科学 混凝土坍落度试验 骨料(复合) 灰浆 混凝土性能 固化(化学) 水泥 复合材料
作者
Tirui Zhang,Yuzhuo Zhang,Qinghe Wang,Atulinda Kato Aganyira,Yanfeng Fang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:71: 106518-106518 被引量:26
标识
DOI:10.1016/j.jobe.2023.106518
摘要

Spontaneous-combustion coal gangue aggregate (SCGA) has low physical properties and strong water absorption capacity. Previous studies are mostly based on the principle of equal mix proportion, which makes the slump of spontaneous-combustion coal gangue aggregate concrete (SCGAC) lower than that of natural aggregate concrete (NAC). This study obtained the compressive strength of SCGAC at different curing ages under the premise of similar concrete workability, and quantified the effect of SCGA content on the compressive strength of concrete; the meso-structure of SCGAC was obtained by SEM test to reveal the deterioration mechanism of SCGAC compressive performance; based on five independent machine learning (ML) algorithms and three ensemble ML algorithms, SCGAC compressive strength prediction models were proposed, and the prediction performance of each model was evaluated to quantify the importance of each influencing factor on the concrete compressive strength. The results show that by using pre-soaked SCGA and refining the concrete mix proportion, fresh concrete with different SCGA replacement ratios can exhibit similar slump values (70–75 mm); due to the weak interfacial transition zones (ITZs) between cement mortar and SCGA, and the inferior properties of SCGA, the compressive strengths of concrete with 100% replacement ratio at 7 d, 14 d, 28 d and 90 d were reduced by 15.3%, 16.7%, 22.0% and 21.6% respectively compared with NAC; the predictive ability of the ensemble ML models was higher than that of the independent ML models, and the XGB model had the best predictive ability; based on the feature importance analysis of SHAP value, it was found that SCGA density, aggregate-cement ratio and SCGA water absorption were the most important factors affecting the compressive strength of SCGAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele应助科研通管家采纳,获得10
3秒前
3秒前
渔樵完成签到,获得积分10
12秒前
14秒前
16秒前
monair完成签到,获得积分10
18秒前
sfwrbh发布了新的文献求助10
19秒前
21秒前
zy发布了新的文献求助10
23秒前
monair发布了新的文献求助10
25秒前
靓丽的鱼完成签到,获得积分20
41秒前
Stella应助靓丽的鱼采纳,获得10
52秒前
58秒前
RE完成签到 ,获得积分10
59秒前
1分钟前
George发布了新的文献求助10
1分钟前
ChiariRay发布了新的文献求助10
1分钟前
1分钟前
ChiariRay完成签到,获得积分10
1分钟前
ginaaaaa发布了新的文献求助10
1分钟前
七色光完成签到,获得积分10
1分钟前
BowieHuang应助靓丽的鱼采纳,获得10
1分钟前
李健的小迷弟应助Hali采纳,获得10
1分钟前
Whc发布了新的文献求助10
1分钟前
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
Whc完成签到,获得积分10
2分钟前
Hali发布了新的文献求助10
2分钟前
桐桐应助独特的秋采纳,获得10
2分钟前
悄悄.完成签到 ,获得积分10
2分钟前
2分钟前
独特的秋完成签到,获得积分10
2分钟前
研友_VZG7GZ应助sihui采纳,获得10
2分钟前
独特的秋发布了新的文献求助10
2分钟前
waleedo2020完成签到,获得积分10
2分钟前
2分钟前
sihui发布了新的文献求助10
2分钟前
桐桐应助河道蟹采纳,获得10
3分钟前
ShengjieZi完成签到,获得积分20
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595689
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818114
捐赠科研通 4651735
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469759