Experimental study and machine learning prediction on compressive strength of spontaneous-combustion coal gangue aggregate concrete

抗压强度 下跌 材料科学 混凝土坍落度试验 骨料(复合) 灰浆 混凝土性能 固化(化学) 水泥 复合材料
作者
Tirui Zhang,Yuzhuo Zhang,Qinghe Wang,Atulinda Kato Aganyira,Yanfeng Fang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:71: 106518-106518 被引量:26
标识
DOI:10.1016/j.jobe.2023.106518
摘要

Spontaneous-combustion coal gangue aggregate (SCGA) has low physical properties and strong water absorption capacity. Previous studies are mostly based on the principle of equal mix proportion, which makes the slump of spontaneous-combustion coal gangue aggregate concrete (SCGAC) lower than that of natural aggregate concrete (NAC). This study obtained the compressive strength of SCGAC at different curing ages under the premise of similar concrete workability, and quantified the effect of SCGA content on the compressive strength of concrete; the meso-structure of SCGAC was obtained by SEM test to reveal the deterioration mechanism of SCGAC compressive performance; based on five independent machine learning (ML) algorithms and three ensemble ML algorithms, SCGAC compressive strength prediction models were proposed, and the prediction performance of each model was evaluated to quantify the importance of each influencing factor on the concrete compressive strength. The results show that by using pre-soaked SCGA and refining the concrete mix proportion, fresh concrete with different SCGA replacement ratios can exhibit similar slump values (70–75 mm); due to the weak interfacial transition zones (ITZs) between cement mortar and SCGA, and the inferior properties of SCGA, the compressive strengths of concrete with 100% replacement ratio at 7 d, 14 d, 28 d and 90 d were reduced by 15.3%, 16.7%, 22.0% and 21.6% respectively compared with NAC; the predictive ability of the ensemble ML models was higher than that of the independent ML models, and the XGB model had the best predictive ability; based on the feature importance analysis of SHAP value, it was found that SCGA density, aggregate-cement ratio and SCGA water absorption were the most important factors affecting the compressive strength of SCGAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶油泡fu完成签到 ,获得积分10
刚刚
dong东包完成签到,获得积分20
1秒前
1秒前
ED应助cccccc采纳,获得10
1秒前
shangziru发布了新的文献求助10
2秒前
漠之梦完成签到,获得积分20
3秒前
sc完成签到,获得积分10
3秒前
谦让的含海完成签到,获得积分10
3秒前
好运連連完成签到,获得积分10
4秒前
6秒前
liu完成签到,获得积分10
6秒前
飞翔的霸天哥应助Yuanchaoyi采纳,获得30
7秒前
香蕉觅云应助WJH采纳,获得10
8秒前
汉堡包应助研友_LOoomL采纳,获得10
8秒前
小二郎应助Felix采纳,获得10
8秒前
zaphkiel完成签到 ,获得积分10
9秒前
健壮的囧完成签到,获得积分10
10秒前
torch132完成签到,获得积分10
11秒前
桐桐应助阿景采纳,获得10
12秒前
12秒前
震动的平松完成签到 ,获得积分10
12秒前
Ting完成签到 ,获得积分10
13秒前
13秒前
Hello应助王冉冉采纳,获得30
14秒前
Ava应助Jarvi采纳,获得10
14秒前
15秒前
16秒前
17秒前
一枚研究僧完成签到,获得积分0
17秒前
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
1351567822应助科研通管家采纳,获得30
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
合适的毛豆完成签到,获得积分10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048