Experimental study and machine learning prediction on compressive strength of spontaneous-combustion coal gangue aggregate concrete

抗压强度 下跌 材料科学 混凝土坍落度试验 骨料(复合) 灰浆 混凝土性能 固化(化学) 水泥 复合材料
作者
Tirui Zhang,Yuzhuo Zhang,Qinghe Wang,Atulinda Kato Aganyira,Yanfeng Fang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:71: 106518-106518 被引量:26
标识
DOI:10.1016/j.jobe.2023.106518
摘要

Spontaneous-combustion coal gangue aggregate (SCGA) has low physical properties and strong water absorption capacity. Previous studies are mostly based on the principle of equal mix proportion, which makes the slump of spontaneous-combustion coal gangue aggregate concrete (SCGAC) lower than that of natural aggregate concrete (NAC). This study obtained the compressive strength of SCGAC at different curing ages under the premise of similar concrete workability, and quantified the effect of SCGA content on the compressive strength of concrete; the meso-structure of SCGAC was obtained by SEM test to reveal the deterioration mechanism of SCGAC compressive performance; based on five independent machine learning (ML) algorithms and three ensemble ML algorithms, SCGAC compressive strength prediction models were proposed, and the prediction performance of each model was evaluated to quantify the importance of each influencing factor on the concrete compressive strength. The results show that by using pre-soaked SCGA and refining the concrete mix proportion, fresh concrete with different SCGA replacement ratios can exhibit similar slump values (70–75 mm); due to the weak interfacial transition zones (ITZs) between cement mortar and SCGA, and the inferior properties of SCGA, the compressive strengths of concrete with 100% replacement ratio at 7 d, 14 d, 28 d and 90 d were reduced by 15.3%, 16.7%, 22.0% and 21.6% respectively compared with NAC; the predictive ability of the ensemble ML models was higher than that of the independent ML models, and the XGB model had the best predictive ability; based on the feature importance analysis of SHAP value, it was found that SCGA density, aggregate-cement ratio and SCGA water absorption were the most important factors affecting the compressive strength of SCGAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzq完成签到 ,获得积分10
1秒前
滴滴哒完成签到,获得积分10
6秒前
喵喵7完成签到 ,获得积分10
6秒前
牛马完成签到,获得积分10
11秒前
谨慎鹏涛完成签到 ,获得积分10
24秒前
Jessie完成签到 ,获得积分10
28秒前
31秒前
丽丽完成签到,获得积分10
44秒前
46秒前
坐宝马吃地瓜完成签到 ,获得积分10
1分钟前
1分钟前
烟花应助拾陆采纳,获得10
1分钟前
伶俐绿柏完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助Ilyas0525采纳,获得10
1分钟前
1分钟前
禾页完成签到 ,获得积分10
1分钟前
CorisKen应助端庄的萝采纳,获得20
1分钟前
打打应助Ilyas0525采纳,获得10
1分钟前
晁子枫完成签到 ,获得积分10
1分钟前
张希伦完成签到 ,获得积分10
1分钟前
Emma发布了新的文献求助80
1分钟前
1分钟前
科目三应助Ilyas0525采纳,获得10
2分钟前
DeepLearning发布了新的文献求助10
2分钟前
Jasmineyfz完成签到 ,获得积分10
2分钟前
2分钟前
Ilyas0525完成签到,获得积分10
2分钟前
Emma完成签到,获得积分10
2分钟前
小木林完成签到 ,获得积分10
2分钟前
朴素羊完成签到 ,获得积分10
2分钟前
辛勤的喉完成签到 ,获得积分10
2分钟前
yunt完成签到 ,获得积分10
2分钟前
林利芳完成签到 ,获得积分0
2分钟前
神勇的翠丝完成签到,获得积分10
2分钟前
xiangwang完成签到 ,获得积分10
2分钟前
Joan_89完成签到,获得积分10
2分钟前
juliar完成签到 ,获得积分10
2分钟前
Akim应助DeepLearning采纳,获得10
2分钟前
迈克老狼完成签到 ,获得积分10
2分钟前
Kelevator完成签到,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990836
求助须知:如何正确求助?哪些是违规求助? 3532241
关于积分的说明 11256631
捐赠科研通 3271100
什么是DOI,文献DOI怎么找? 1805313
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809236