Experimental study and machine learning prediction on compressive strength of spontaneous-combustion coal gangue aggregate concrete

抗压强度 下跌 材料科学 混凝土坍落度试验 骨料(复合) 灰浆 混凝土性能 固化(化学) 水泥 复合材料
作者
Tirui Zhang,Yuzhuo Zhang,Qinghe Wang,Atulinda Kato Aganyira,Yanfeng Fang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:71: 106518-106518 被引量:26
标识
DOI:10.1016/j.jobe.2023.106518
摘要

Spontaneous-combustion coal gangue aggregate (SCGA) has low physical properties and strong water absorption capacity. Previous studies are mostly based on the principle of equal mix proportion, which makes the slump of spontaneous-combustion coal gangue aggregate concrete (SCGAC) lower than that of natural aggregate concrete (NAC). This study obtained the compressive strength of SCGAC at different curing ages under the premise of similar concrete workability, and quantified the effect of SCGA content on the compressive strength of concrete; the meso-structure of SCGAC was obtained by SEM test to reveal the deterioration mechanism of SCGAC compressive performance; based on five independent machine learning (ML) algorithms and three ensemble ML algorithms, SCGAC compressive strength prediction models were proposed, and the prediction performance of each model was evaluated to quantify the importance of each influencing factor on the concrete compressive strength. The results show that by using pre-soaked SCGA and refining the concrete mix proportion, fresh concrete with different SCGA replacement ratios can exhibit similar slump values (70–75 mm); due to the weak interfacial transition zones (ITZs) between cement mortar and SCGA, and the inferior properties of SCGA, the compressive strengths of concrete with 100% replacement ratio at 7 d, 14 d, 28 d and 90 d were reduced by 15.3%, 16.7%, 22.0% and 21.6% respectively compared with NAC; the predictive ability of the ensemble ML models was higher than that of the independent ML models, and the XGB model had the best predictive ability; based on the feature importance analysis of SHAP value, it was found that SCGA density, aggregate-cement ratio and SCGA water absorption were the most important factors affecting the compressive strength of SCGAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助夜已深采纳,获得10
1秒前
1秒前
爆米花应助尤珩采纳,获得10
1秒前
xss关闭了xss文献求助
1秒前
2秒前
不加糖完成签到,获得积分10
2秒前
wanayu发布了新的文献求助10
3秒前
zxzb发布了新的文献求助10
3秒前
研友_Zb1rln完成签到,获得积分10
3秒前
上官若男应助dy采纳,获得10
4秒前
4秒前
4秒前
毅梦完成签到,获得积分10
4秒前
4秒前
Master_Ye发布了新的文献求助10
5秒前
酒尚温完成签到 ,获得积分10
5秒前
5秒前
徐昊雯发布了新的文献求助10
5秒前
6秒前
6秒前
跳跃墨镜发布了新的文献求助10
7秒前
十六夜完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
丰富的鞅完成签到,获得积分10
10秒前
10秒前
户学静发布了新的文献求助10
10秒前
自然的凝冬应助ljz910005采纳,获得20
10秒前
11秒前
11秒前
11秒前
QAINNNNN完成签到,获得积分20
11秒前
时尚浩轩完成签到 ,获得积分10
11秒前
King16完成签到,获得积分10
11秒前
兰彻发布了新的文献求助10
11秒前
sfwrbh完成签到,获得积分10
12秒前
在水一方应助开心金毛采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437