已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Introducing ANN-GP algorithm to estimate transient bending of the functionally graded graphene origami-enabled auxetic metamaterial structures

辅助 超材料 弯曲 石墨烯 瞬态(计算机编程) 材料科学 结构工程 算法 拓扑(电路) 复合材料 计算机科学 机械工程 纳米技术 工程类 数学 组合数学 光电子学 操作系统
作者
Chunlei Lin,Guangyong Pan,Mohamed Abbas
出处
期刊:Mechanics of Advanced Materials and Structures [Informa]
卷期号:: 1-20 被引量:8
标识
DOI:10.1080/15376494.2024.2344020
摘要

This article presents a new method called the artificial neural networks-genetic programming (ANNs-GP) algorithm, which effectively predicts the bending behavior of functionally graded graphene origami-enabled auxetic metamaterial (FG-GORAM) structures under transient conditions. Functionally graded materials (FGMs) display spatial heterogeneity in their composition and microstructure, resulting in distinctive mechanical characteristics that make them well-suited for a wide range of engineering applications. The objective of this study is to create a prediction model that can accurately capture the intricate transient bending behavior of FGM structures. To do this, the researchers have used the ANN-GP technique, which combines ANNs with GP. The ANN component acquires knowledge from a dataset including actual or simulated bending data, while the GP component fine-tunes the structure and parameters of the neural network to improve its ability to make accurate predictions. The proposed algorithm combines the strengths of ANNs and GP to accurately predict the bending behavior of FG-GORAM structures. This algorithm is robust and efficient, allowing designers and engineers to optimize the performance and reliability of these structures in various applications. The effectiveness of the ANN-GP method is proved by comparing it to experimental or simulated data. This shows that the algorithm has the potential to be a useful tool for designing and analyzing sophisticated materials and structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助sxc257采纳,获得10
1秒前
Kinkrit完成签到 ,获得积分10
1秒前
科研通AI6.1应助桃子e采纳,获得10
1秒前
3秒前
大仁哥发布了新的文献求助30
7秒前
8秒前
hanatae完成签到,获得积分10
11秒前
11秒前
Dpj完成签到 ,获得积分10
13秒前
勤奋的猫咪完成签到 ,获得积分10
13秒前
13秒前
一碗鱼发布了新的文献求助10
14秒前
myg123完成签到 ,获得积分10
15秒前
15秒前
glowworm完成签到 ,获得积分10
17秒前
ke888发布了新的文献求助30
19秒前
乔乔那个孩子完成签到,获得积分10
20秒前
qq完成签到,获得积分10
20秒前
Ember发布了新的文献求助10
21秒前
笑点低的悒完成签到 ,获得积分10
21秒前
小付完成签到,获得积分10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
23秒前
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
25秒前
桃子e发布了新的文献求助10
26秒前
30秒前
Alkaid完成签到,获得积分20
30秒前
文艺冰露完成签到,获得积分10
31秒前
toutou完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787738
求助须知:如何正确求助?哪些是违规求助? 5701695
关于积分的说明 15472763
捐赠科研通 4916049
什么是DOI,文献DOI怎么找? 2646090
邀请新用户注册赠送积分活动 1593807
关于科研通互助平台的介绍 1548110