Introducing ANN-GP algorithm to estimate transient bending of the functionally graded graphene origami-enabled auxetic metamaterial structures

辅助 超材料 弯曲 石墨烯 瞬态(计算机编程) 材料科学 结构工程 算法 拓扑(电路) 复合材料 计算机科学 机械工程 纳米技术 工程类 数学 组合数学 光电子学 操作系统
作者
Chunlei Lin,Guangyong Pan,Mohamed Abbas
出处
期刊:Mechanics of Advanced Materials and Structures [Informa]
卷期号:: 1-20 被引量:8
标识
DOI:10.1080/15376494.2024.2344020
摘要

This article presents a new method called the artificial neural networks-genetic programming (ANNs-GP) algorithm, which effectively predicts the bending behavior of functionally graded graphene origami-enabled auxetic metamaterial (FG-GORAM) structures under transient conditions. Functionally graded materials (FGMs) display spatial heterogeneity in their composition and microstructure, resulting in distinctive mechanical characteristics that make them well-suited for a wide range of engineering applications. The objective of this study is to create a prediction model that can accurately capture the intricate transient bending behavior of FGM structures. To do this, the researchers have used the ANN-GP technique, which combines ANNs with GP. The ANN component acquires knowledge from a dataset including actual or simulated bending data, while the GP component fine-tunes the structure and parameters of the neural network to improve its ability to make accurate predictions. The proposed algorithm combines the strengths of ANNs and GP to accurately predict the bending behavior of FG-GORAM structures. This algorithm is robust and efficient, allowing designers and engineers to optimize the performance and reliability of these structures in various applications. The effectiveness of the ANN-GP method is proved by comparing it to experimental or simulated data. This shows that the algorithm has the potential to be a useful tool for designing and analyzing sophisticated materials and structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任性的向薇完成签到,获得积分10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
NICAI应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得10
4秒前
小葵花完成签到 ,获得积分10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
拼搏应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
小新应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Verity应助科研通管家采纳,获得10
5秒前
小新应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
7秒前
韩涵完成签到 ,获得积分10
9秒前
10秒前
adoudoo完成签到 ,获得积分10
11秒前
Jodie发布了新的文献求助10
15秒前
GaoChenxi完成签到 ,获得积分10
15秒前
大芳儿完成签到,获得积分10
18秒前
shuide完成签到,获得积分20
19秒前
深情安青应助莉莉子采纳,获得10
20秒前
yara完成签到 ,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555