ECGAN-Assisted ResT-Net Based on Fuzziness for OSA Detection

休息(音乐) 计算机科学 人工智能 医学 内科学
作者
Zhiya Wang,Xue Pan,Zhen Mei,Zhifei Xu,Yudan Lv,Yuan Zhang,Cuntai Guan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (8): 2518-2527 被引量:1
标识
DOI:10.1109/tbme.2024.3378508
摘要

Objective:Growing attention has been paid recently to electrocardiogram (ECG) based obstructive sleep apnea (OSA) detection, with some progresses been made on this topic. However, the lack of data, low data quality, and incomplete data labeling hinder the application of deep learning to OSA detection, which in turn affects the overall generalization capacity of the network. Methods: To address these issues, we propose the ResT-ECGAN framework. It uses a one-dimensional generative adversarial network (ECGAN) for sample generation, and integrates it into ResTNet for OSA detection. ECGAN filters the generated ECG signals by incorporating the concept of fuzziness, effectively increasing the amount of high-quality data. ResT-Net not only alleviates the problems caused by deepening the network but also utilizes multihead attention mechanisms to parallelize sequence processing and extract more valuable OSA detection features by leveraging contextual information. Results: Through extensive experiments, we verify that ECGAN can effectively improve the OSA detection performance of ResT-Net. Using only ResT-Net for detection, the accuracy on the Apnea-ECG and private databases is 0.885 and 0.837, respectively. By adding ECGAN-generated data augmentation, the accuracy is increased to 0.893 and 0.848, respectively. Conclusion and significance: Comparing with the state-of-the-art deep learning methods, our method outperforms them in terms of accuracy. This study provides a new approach and solution to improve OSA detection in situations with limited labeled samples
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布坎南发布了新的文献求助10
1秒前
dreamflower完成签到,获得积分10
1秒前
2秒前
努力完成签到,获得积分10
3秒前
轻松不愁应助bobo采纳,获得10
3秒前
hhh发布了新的文献求助10
4秒前
老毛桃完成签到,获得积分10
4秒前
4秒前
SciGPT应助小全采纳,获得30
4秒前
彪壮的短靴关注了科研通微信公众号
5秒前
5秒前
佳宝(不可以喝但能吃完成签到,获得积分10
5秒前
Robin发布了新的文献求助10
7秒前
小二郎应助awu采纳,获得10
8秒前
8秒前
学术小天才完成签到 ,获得积分10
9秒前
10秒前
银耳完成签到,获得积分20
10秒前
背后飞松完成签到,获得积分10
12秒前
Bernice发布了新的文献求助10
12秒前
一只半夏完成签到,获得积分10
13秒前
阿拉斯加今天学习了吗完成签到,获得积分10
13秒前
13秒前
魔幻海豚发布了新的文献求助10
15秒前
gl6542发布了新的文献求助10
16秒前
16秒前
17秒前
背后飞松发布了新的文献求助20
17秒前
天天快乐应助ymu采纳,获得30
17秒前
科研通AI2S应助独特的秋采纳,获得10
19秒前
20秒前
lllttt完成签到,获得积分10
21秒前
21秒前
小全发布了新的文献求助30
23秒前
咖啡续命完成签到 ,获得积分10
23秒前
23秒前
所所应助老毛桃采纳,获得10
25秒前
26秒前
Leofar发布了新的文献求助30
26秒前
游旭勇发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412654
求助须知:如何正确求助?哪些是违规求助? 3015273
关于积分的说明 8869601
捐赠科研通 2703053
什么是DOI,文献DOI怎么找? 1482000
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679771