ECGAN-Assisted ResT-Net Based on Fuzziness for OSA Detection

休息(音乐) 计算机科学 人工智能 医学 内科学
作者
Zhiya Wang,Xue Pan,Zhen Mei,Zhifei Xu,Yudan Lv,Yuan Zhang,Cuntai Guan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (8): 2518-2527 被引量:1
标识
DOI:10.1109/tbme.2024.3378508
摘要

Objective:Growing attention has been paid recently to electrocardiogram (ECG) based obstructive sleep apnea (OSA) detection, with some progresses been made on this topic. However, the lack of data, low data quality, and incomplete data labeling hinder the application of deep learning to OSA detection, which in turn affects the overall generalization capacity of the network. Methods: To address these issues, we propose the ResT-ECGAN framework. It uses a one-dimensional generative adversarial network (ECGAN) for sample generation, and integrates it into ResTNet for OSA detection. ECGAN filters the generated ECG signals by incorporating the concept of fuzziness, effectively increasing the amount of high-quality data. ResT-Net not only alleviates the problems caused by deepening the network but also utilizes multihead attention mechanisms to parallelize sequence processing and extract more valuable OSA detection features by leveraging contextual information. Results: Through extensive experiments, we verify that ECGAN can effectively improve the OSA detection performance of ResT-Net. Using only ResT-Net for detection, the accuracy on the Apnea-ECG and private databases is 0.885 and 0.837, respectively. By adding ECGAN-generated data augmentation, the accuracy is increased to 0.893 and 0.848, respectively. Conclusion and significance: Comparing with the state-of-the-art deep learning methods, our method outperforms them in terms of accuracy. This study provides a new approach and solution to improve OSA detection in situations with limited labeled samples
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金金发布了新的文献求助10
刚刚
刚刚
最爱地瓜和虾滑完成签到 ,获得积分10
2秒前
2秒前
群山完成签到 ,获得积分10
2秒前
3秒前
tramp应助zhong采纳,获得10
3秒前
YAO发布了新的文献求助10
3秒前
白羽佳发布了新的文献求助10
5秒前
ChrisKim完成签到,获得积分10
5秒前
莫莫莫发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
北城发布了新的文献求助20
8秒前
所所应助是小袁呀采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
华仔应助哈尔采纳,获得10
9秒前
无情的匪发布了新的文献求助10
10秒前
CipherSage应助2534165采纳,获得10
10秒前
10秒前
吴五五完成签到,获得积分10
11秒前
luo发布了新的文献求助10
12秒前
韶华若锦完成签到 ,获得积分20
12秒前
13秒前
浮生发布了新的文献求助10
14秒前
Susam发布了新的文献求助10
14秒前
15秒前
今后应助Anoxia采纳,获得10
16秒前
YAO关闭了YAO文献求助
16秒前
17秒前
19秒前
榛蘑大王完成签到,获得积分10
20秒前
金金发布了新的文献求助10
20秒前
星辰大海应助高挑的牛青采纳,获得10
20秒前
汉堡包应助烂漫的断秋采纳,获得10
20秒前
随机完成签到,获得积分10
22秒前
22秒前
22秒前
顺心的舞蹈完成签到,获得积分10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182