Anisotropic physics-regularized interpretable machine learning of microstructure evolution

各向异性 微观结构 材料科学 人工智能 统计物理学 物理 凝聚态物理 计算机科学 光学 冶金
作者
Joseph Melville,Vishal Yadav,Lin Yang,Amanda R. Krause,Michael R. Tonks,Joel B. Harley
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:238: 112941-112941
标识
DOI:10.1016/j.commatsci.2024.112941
摘要

Anisotropic Physics-Regularized Interpretable Machine Learning Microstructure Evolution (APRIMME) is a general-purpose machine learning solution for grain growth simulations. In prior work, PRIMME employed a deep neural network to predict site-specific migration as a function of its neighboring sites to model normal, isotropic, grain growth behavior. This work aims to extend this method by incorporating grain boundary misorientation-based grain growth behavior. APRIMME is trained on anisotropic simulations created using the Monte Carlo-Potts (MCP) model. The results of this work are compared statistically using grain radius, number of sides per grain, mean neighborhood misorientations, and the standard deviation of triple junction dihedral angles, and are found to match in most cases. The exceptions are small and seem to be related to two causes: (1) the deterministic model of APRIMME is learning from the stochastic simulations of MCP, which seems to accentuate triple junction behaviors; and, (2) a bias against very small grains is made evident in a quicker decrease in grains than expected at the beginning of an APRIMME simulation. APRIMME is also evaluated for its general ability to capture anisotropic grain growth behavior by first investigating different test case initial conditions, including a circle grain, three grain, and hexagonal grain microstructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟仇天发布了新的文献求助10
1秒前
1秒前
丘比特应助贪玩菲音采纳,获得10
1秒前
2秒前
3秒前
汉堡包应助颜又菱采纳,获得10
4秒前
yang发布了新的文献求助10
6秒前
汉堡包应助西蜀小吏采纳,获得10
6秒前
6秒前
August完成签到,获得积分10
6秒前
牧青发布了新的文献求助10
7秒前
shinn发布了新的文献求助10
7秒前
joecoco发布了新的文献求助10
7秒前
7秒前
阳佟仇天完成签到,获得积分10
8秒前
SciGPT应助chenu采纳,获得10
8秒前
9秒前
9秒前
大模型应助你爱我我爱你采纳,获得50
9秒前
10秒前
Wesley完成签到,获得积分10
11秒前
11秒前
12秒前
zs发布了新的文献求助10
13秒前
14秒前
14秒前
最爱吃火锅完成签到,获得积分10
15秒前
15秒前
joecoco完成签到,获得积分20
15秒前
霸气狄公发布了新的文献求助40
15秒前
NSstupid完成签到,获得积分10
16秒前
16秒前
123完成签到,获得积分10
17秒前
777发布了新的文献求助10
17秒前
20秒前
123发布了新的文献求助10
20秒前
20秒前
木木康发布了新的文献求助10
22秒前
22秒前
大个应助mukou采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309