Anisotropic physics-regularized interpretable machine learning of microstructure evolution

各向异性 微观结构 材料科学 人工智能 统计物理学 物理 凝聚态物理 计算机科学 光学 冶金
作者
Joseph Melville,Vishal Yadav,Lin Yang,Amanda R. Krause,Michael R. Tonks,Joel B. Harley
出处
期刊:Computational Materials Science [Elsevier]
卷期号:238: 112941-112941
标识
DOI:10.1016/j.commatsci.2024.112941
摘要

Anisotropic Physics-Regularized Interpretable Machine Learning Microstructure Evolution (APRIMME) is a general-purpose machine learning solution for grain growth simulations. In prior work, PRIMME employed a deep neural network to predict site-specific migration as a function of its neighboring sites to model normal, isotropic, grain growth behavior. This work aims to extend this method by incorporating grain boundary misorientation-based grain growth behavior. APRIMME is trained on anisotropic simulations created using the Monte Carlo-Potts (MCP) model. The results of this work are compared statistically using grain radius, number of sides per grain, mean neighborhood misorientations, and the standard deviation of triple junction dihedral angles, and are found to match in most cases. The exceptions are small and seem to be related to two causes: (1) the deterministic model of APRIMME is learning from the stochastic simulations of MCP, which seems to accentuate triple junction behaviors; and, (2) a bias against very small grains is made evident in a quicker decrease in grains than expected at the beginning of an APRIMME simulation. APRIMME is also evaluated for its general ability to capture anisotropic grain growth behavior by first investigating different test case initial conditions, including a circle grain, three grain, and hexagonal grain microstructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youjiang发布了新的文献求助10
刚刚
2秒前
孤独收割人完成签到,获得积分10
2秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
4秒前
Upupcc发布了新的文献求助10
6秒前
6秒前
勤劳落雁发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
周周发布了新的文献求助10
8秒前
9秒前
科研通AI5应助解青文采纳,获得10
9秒前
科研通AI5应助魏伯安采纳,获得30
9秒前
nekoneko完成签到,获得积分10
12秒前
12秒前
13秒前
帅关发布了新的文献求助10
13秒前
yyyyy语言发布了新的文献求助10
14秒前
asheng98完成签到 ,获得积分10
15秒前
Chen完成签到,获得积分10
15秒前
慕青应助guajiguaji采纳,获得10
16秒前
圣晟胜发布了新的文献求助10
17秒前
17秒前
17秒前
不会失忆完成签到,获得积分10
19秒前
思源应助路边一颗小草采纳,获得10
19秒前
上官若男应助帅关采纳,获得10
20秒前
qin完成签到,获得积分10
21秒前
21秒前
流浪小诗人完成签到,获得积分10
21秒前
23秒前
知性的觅露完成签到,获得积分10
23秒前
朱湋帆完成签到 ,获得积分10
23秒前
devil发布了新的文献求助10
24秒前
乐乐应助咸鱼一号采纳,获得10
25秒前
27秒前
youjiang完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849