Anisotropic physics-regularized interpretable machine learning of microstructure evolution

各向异性 微观结构 材料科学 人工智能 统计物理学 物理 凝聚态物理 计算机科学 光学 冶金
作者
Joseph Melville,Vishal Yadav,Lin Yang,Amanda R. Krause,Michael R. Tonks,Joel B. Harley
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:238: 112941-112941
标识
DOI:10.1016/j.commatsci.2024.112941
摘要

Anisotropic Physics-Regularized Interpretable Machine Learning Microstructure Evolution (APRIMME) is a general-purpose machine learning solution for grain growth simulations. In prior work, PRIMME employed a deep neural network to predict site-specific migration as a function of its neighboring sites to model normal, isotropic, grain growth behavior. This work aims to extend this method by incorporating grain boundary misorientation-based grain growth behavior. APRIMME is trained on anisotropic simulations created using the Monte Carlo-Potts (MCP) model. The results of this work are compared statistically using grain radius, number of sides per grain, mean neighborhood misorientations, and the standard deviation of triple junction dihedral angles, and are found to match in most cases. The exceptions are small and seem to be related to two causes: (1) the deterministic model of APRIMME is learning from the stochastic simulations of MCP, which seems to accentuate triple junction behaviors; and, (2) a bias against very small grains is made evident in a quicker decrease in grains than expected at the beginning of an APRIMME simulation. APRIMME is also evaluated for its general ability to capture anisotropic grain growth behavior by first investigating different test case initial conditions, including a circle grain, three grain, and hexagonal grain microstructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bhappy21发布了新的文献求助40
刚刚
充电宝应助魔幻花卷采纳,获得10
1秒前
活泼的平灵完成签到,获得积分10
1秒前
素律完成签到,获得积分10
2秒前
xieyuanxing发布了新的文献求助10
2秒前
2秒前
蹬蹬蹬发布了新的文献求助30
2秒前
2秒前
Jasper应助xiaoziyi666采纳,获得10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
酷波er应助liziming采纳,获得10
4秒前
aaaaaa完成签到,获得积分10
4秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
圆锥香蕉举报南南求助涉嫌违规
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
tsm完成签到,获得积分10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
夜幕应助科研通管家采纳,获得20
6秒前
退而求其次完成签到,获得积分10
6秒前
尙光发布了新的文献求助10
7秒前
8秒前
9秒前
zuhayr发布了新的文献求助10
9秒前
科研通AI5应助生动的翠容采纳,获得10
9秒前
10秒前
10秒前
10秒前
英俊的铭应助蹬蹬蹬采纳,获得10
10秒前
魏你大爷发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602889
求助须知:如何正确求助?哪些是违规求助? 4011856
关于积分的说明 12420674
捐赠科研通 3692191
什么是DOI,文献DOI怎么找? 2035504
邀请新用户注册赠送积分活动 1068692
科研通“疑难数据库(出版商)”最低求助积分说明 953208