清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Anisotropic physics-regularized interpretable machine learning of microstructure evolution

各向异性 微观结构 材料科学 人工智能 统计物理学 物理 凝聚态物理 计算机科学 光学 冶金
作者
Joseph Melville,Vishal Yadav,Lin Yang,Amanda R. Krause,Michael R. Tonks,Joel B. Harley
出处
期刊:Computational Materials Science [Elsevier]
卷期号:238: 112941-112941
标识
DOI:10.1016/j.commatsci.2024.112941
摘要

Anisotropic Physics-Regularized Interpretable Machine Learning Microstructure Evolution (APRIMME) is a general-purpose machine learning solution for grain growth simulations. In prior work, PRIMME employed a deep neural network to predict site-specific migration as a function of its neighboring sites to model normal, isotropic, grain growth behavior. This work aims to extend this method by incorporating grain boundary misorientation-based grain growth behavior. APRIMME is trained on anisotropic simulations created using the Monte Carlo-Potts (MCP) model. The results of this work are compared statistically using grain radius, number of sides per grain, mean neighborhood misorientations, and the standard deviation of triple junction dihedral angles, and are found to match in most cases. The exceptions are small and seem to be related to two causes: (1) the deterministic model of APRIMME is learning from the stochastic simulations of MCP, which seems to accentuate triple junction behaviors; and, (2) a bias against very small grains is made evident in a quicker decrease in grains than expected at the beginning of an APRIMME simulation. APRIMME is also evaluated for its general ability to capture anisotropic grain growth behavior by first investigating different test case initial conditions, including a circle grain, three grain, and hexagonal grain microstructures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
ceeray23发布了新的文献求助20
9秒前
souther完成签到,获得积分0
57秒前
SciGPT应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
sage_kakarotto完成签到 ,获得积分10
1分钟前
大喜喜发布了新的文献求助200
1分钟前
AA完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
发呆员发布了新的文献求助10
1分钟前
旅行者完成签到,获得积分10
2分钟前
TXZ06发布了新的文献求助10
2分钟前
科研通AI6应助发呆员采纳,获得10
2分钟前
lululemontree应助大刘采纳,获得30
2分钟前
2分钟前
大喜喜发布了新的文献求助10
2分钟前
LinglongCai完成签到 ,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
barry发布了新的文献求助10
3分钟前
ceeray23发布了新的文献求助20
4分钟前
tt完成签到,获得积分10
4分钟前
发呆员发布了新的文献求助10
4分钟前
科研通AI2S应助发呆员采纳,获得10
4分钟前
4分钟前
白日睡觉发布了新的文献求助10
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
雪山飞龙发布了新的文献求助10
4分钟前
英俊的铭应助白日睡觉采纳,获得10
4分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4613925
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531