Gas concentration prediction by LSTM network combined with wavelet thresholding denoising and phase space reconstruction

人工神经网络 降噪 计算机科学 小波 噪音(视频) 模式识别(心理学) 人工智能 混乱的 均方误差 希尔伯特-黄变换 算法 数学 统计 滤波器(信号处理) 计算机视觉 图像(数学)
作者
Kun Gao,ZuoJin Zhou,Yijun Qin
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (7): e28112-e28112 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e28112
摘要

The Long Short-Term Memory neural network is a specialized architecture designed for handling time series data, extensively applied in the field of predicting gas concentrations. In the harsh conditions prevalent in coal mines, the time series data of gas concentrations collected by sensors are susceptible to noise interference. Directly inputting such noisy data into a neural network for training would significantly reduce predictive accuracy and lead to deviations from the actual values. The Empirical Mode Decomposition method, commonly employed in gas concentration prediction, faces challenges in practical engineering applications due to the substantial influence of newly acquired data on the initial decomposition subsequence values. Consequently, it is difficult to use this method as intended. Conversely, the Wavelet Threshold Denoising method does not encounter this issue. Furthermore, gas concentration sequences exhibit chaotic characteristics. Performing phase space reconstruction allows for the extraction of additional valuable hidden information. In light of these factors, a prediction model is proposed, integrating WTD, Phase Space Reconstruction, and LSTM neural networks. Initially, the gas concentration sequence itself is subjected to wavelet threshold denoising. Subsequently, phase space reconstruction is performed, and the resulting reconstructed phase space matrix serves as the input for the LSTM neural network. The outcomes from the final LSTM neural network reveal that the PS method indeed extracts more valuable information. The Mean Absolute Error and Root Mean Square Error are reduced by 35.1% and 25%, respectively. Additionally, when compared to the PS-LSTM model without utilizing the WTD method, the WTD-PS-LSTM predictive model showcases reductions of 77.1% and 80% in MAE and RMSE, respectively. Compared with the LSTM model, the MAE and RMSE of the WTD-PS-LSTM prediction model were reduced by 81.4% and 82.6%, respectively. This greatly improves the credibility of whether or not a response related to coal mine safety management is implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹子完成签到,获得积分10
2秒前
Roc发布了新的文献求助10
2秒前
工大搬砖战神完成签到,获得积分10
3秒前
善学以致用应助沉溺采纳,获得10
4秒前
CipherSage应助蚂蚁Y嘿采纳,获得10
4秒前
代杰居然发布了新的文献求助10
4秒前
万能的小叮当完成签到,获得积分0
4秒前
5秒前
Phil丶完成签到,获得积分10
7秒前
9秒前
付霖云完成签到 ,获得积分10
10秒前
12秒前
Hongtauo完成签到,获得积分10
12秒前
ding应助温婉的夏烟采纳,获得10
12秒前
SYLH应助棋士采纳,获得10
15秒前
蚂蚁Y嘿发布了新的文献求助10
15秒前
各自cc完成签到,获得积分10
15秒前
ZG关闭了ZG文献求助
16秒前
武思远完成签到,获得积分10
16秒前
沉溺发布了新的文献求助10
17秒前
木棉发布了新的文献求助10
17秒前
orixero应助赤练仙子采纳,获得10
18秒前
丘比特应助yuyang采纳,获得10
18秒前
19秒前
19秒前
20秒前
21秒前
21秒前
思源应助qx采纳,获得10
21秒前
跳跃傲安完成签到,获得积分20
22秒前
22秒前
孙sy发布了新的文献求助10
23秒前
油炸关注了科研通微信公众号
23秒前
阿狄丽娜发布了新的文献求助10
23秒前
24秒前
李汝嘉发布了新的文献求助10
25秒前
25秒前
Qing发布了新的文献求助30
26秒前
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952902
求助须知:如何正确求助?哪些是违规求助? 3498332
关于积分的说明 11091532
捐赠科研通 3228969
什么是DOI,文献DOI怎么找? 1785163
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377