Gas concentration prediction by LSTM network combined with wavelet thresholding denoising and phase space reconstruction

人工神经网络 降噪 计算机科学 小波 噪音(视频) 模式识别(心理学) 人工智能 混乱的 均方误差 希尔伯特-黄变换 算法 数学 统计 滤波器(信号处理) 计算机视觉 图像(数学)
作者
Kun Gao,ZuoJin Zhou,Yijun Qin
出处
期刊:Heliyon [Elsevier]
卷期号:10 (7): e28112-e28112 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e28112
摘要

The Long Short-Term Memory neural network is a specialized architecture designed for handling time series data, extensively applied in the field of predicting gas concentrations. In the harsh conditions prevalent in coal mines, the time series data of gas concentrations collected by sensors are susceptible to noise interference. Directly inputting such noisy data into a neural network for training would significantly reduce predictive accuracy and lead to deviations from the actual values. The Empirical Mode Decomposition method, commonly employed in gas concentration prediction, faces challenges in practical engineering applications due to the substantial influence of newly acquired data on the initial decomposition subsequence values. Consequently, it is difficult to use this method as intended. Conversely, the Wavelet Threshold Denoising method does not encounter this issue. Furthermore, gas concentration sequences exhibit chaotic characteristics. Performing phase space reconstruction allows for the extraction of additional valuable hidden information. In light of these factors, a prediction model is proposed, integrating WTD, Phase Space Reconstruction, and LSTM neural networks. Initially, the gas concentration sequence itself is subjected to wavelet threshold denoising. Subsequently, phase space reconstruction is performed, and the resulting reconstructed phase space matrix serves as the input for the LSTM neural network. The outcomes from the final LSTM neural network reveal that the PS method indeed extracts more valuable information. The Mean Absolute Error and Root Mean Square Error are reduced by 35.1% and 25%, respectively. Additionally, when compared to the PS-LSTM model without utilizing the WTD method, the WTD-PS-LSTM predictive model showcases reductions of 77.1% and 80% in MAE and RMSE, respectively. Compared with the LSTM model, the MAE and RMSE of the WTD-PS-LSTM prediction model were reduced by 81.4% and 82.6%, respectively. This greatly improves the credibility of whether or not a response related to coal mine safety management is implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚拟的落雁完成签到,获得积分10
刚刚
单薄夏菡发布了新的文献求助10
刚刚
Zzzzy完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
斯文败类应助zilhua采纳,获得10
4秒前
完美秋烟完成签到 ,获得积分10
4秒前
Akim应助WQ采纳,获得10
4秒前
兴奋冷松发布了新的文献求助10
4秒前
难过的小甜瓜完成签到,获得积分10
5秒前
小二郎应助含蓄小鸭子采纳,获得10
5秒前
二七发布了新的文献求助10
5秒前
手机应助干净的元菱采纳,获得10
5秒前
如意星月完成签到,获得积分10
5秒前
6秒前
柔弱吉利蛋完成签到 ,获得积分10
6秒前
6秒前
南南发布了新的文献求助10
7秒前
淡淡安筠完成签到,获得积分20
7秒前
丰知然应助包容又琴采纳,获得10
8秒前
整齐芷文完成签到,获得积分10
9秒前
9秒前
10秒前
高贵水壶发布了新的文献求助10
10秒前
10秒前
共享精神应助故意的诗筠采纳,获得10
11秒前
mayox完成签到,获得积分10
11秒前
12秒前
白华苍松发布了新的文献求助10
12秒前
寻道图强应助慕博采纳,获得30
12秒前
李健应助NONO采纳,获得10
13秒前
汉堡包应助hs采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
jdsajdka发布了新的文献求助10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296125
求助须知:如何正确求助?哪些是违规求助? 2932114
关于积分的说明 8454841
捐赠科研通 2604552
什么是DOI,文献DOI怎么找? 1421831
科研通“疑难数据库(出版商)”最低求助积分说明 661234
邀请新用户注册赠送积分活动 644130